首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
针对神经网络难以利用少量标注数据获取足够的信息来正确分类图像的问题,提出了一种融合随机深度网络和多尺度卷积的关系网络——SDM-RNET.首先在模型嵌入模块引入随机深度网络用于加深模型深度,然后在特征提取阶段采用多尺度深度可分离卷积替代普通卷积进行特征融合,经过骨干网络后再采用深浅层特征融合获取更丰富的图像特征,最终学习预测出图像的类别.在mini-ImageNet、RP2K、Omniglot这3个数据集上对比该方法与其他小样本图像分类方法,结果表明在5-way 1-shot和5-way 5-shot分类任务上该方法准确率最高.  相似文献   

2.
目的 小样本学习旨在通过一幅或几幅图像来学习全新的类别。目前许多小样本学习方法基于图像的全局表征,可以很好地实现常规小样本图像分类任务。但是,细粒度图像分类需要依赖局部的图像特征,而基于全局表征的方法无法有效地获取图像的局部特征,导致很多小样本学习方法不能很好地处理细粒度小样本图像分类问题。为此,提出一种融合弱监督目标定位的细粒度小样本学习方法。方法 在数据量有限的情况下,目标定位是一个有效的方法,能直接提供最具区分性的区域。受此启发,提出了一个基于自注意力的互补定位模块来实现弱监督目标定位,生成筛选掩膜进行特征描述子的筛选。基于筛选的特征描述子,设计了一种语义对齐距离来度量图像最具区分性区域的相关性,进而完成细粒度小样本图像分类。结果 在mini Image Net数据集上,本文方法在1-shot和5-shot下的分类精度相较性能第2的方法高出0.56%和5.02%。在细粒度数据集Stanford Dogs和Stanford Cars数据集上,本文方法在1-shot和5-shot下的分类精度相较性能第2的方法分别提高了4.18%,7.49%和16.13,5.17%。在CUB 200-...  相似文献   

3.
赵小虎  李晓 《计算机应用》2021,41(6):1640-1646
针对图像语义描述方法中存在的图像特征信息提取不完全以及循环神经网络(RNN)产生的梯度消失问题,提出了一种基于多特征提取的图像语义描述算法.所构建模型由三个部分组成:卷积神经网络(CNN)用于图像特征提取,属性提取模型(ATT)用于图像属性提取,而双向长短时记忆(Bi-LSTM)网络用于单词预测.该模型通过提取图像属性...  相似文献   

4.
陈嘉言  任东东  李文斌  霍静  高阳 《软件学报》2024,35(5):2414-2429
小样本学习旨在模拟人类基于少数样例快速学习新事物的能力, 对解决样本匮乏情境下的深度学习任务具有重要意义. 但是, 在诸多计算资源有限的现实任务中, 模型规模仍可能限制小样本学习的广泛应用. 这对面向小样本学习的轻量化任务提出了现实的需求. 知识蒸馏作为深度学习领域广泛使用的辅助策略, 通过额外的监督信息实现模型间知识迁移, 在提升模型精度和压缩模型规模方面都有实际应用. 首先验证知识蒸馏策略在小样本学习模型轻量化中的有效性. 并结合小样本学习任务的特点, 针对性地设计两种新的小样本蒸馏方法: (1)基于图像局部特征的蒸馏方法; (2)基于辅助分类器的蒸馏方法. 在miniImageNet和TieredImageNet数据集上的相关实验证明所设计的新的蒸馏方法相较于传统知识蒸馏在小样本学习任务上具有显著优越性.  相似文献   

5.
近年来,Hashtag推荐任务吸引了很多研究者的关注。目前,大部分深度学习方法把这个任务看作是一个多标签分类问题,将Hashtag看作为微博的类别。但是这些方法的输出空间固定,在没有进行重新训练的情况下,不能处理训练不可见的Hashtag。然而,实际上Hashtag会随着时事热点不断快速更新。为了解决这一问题,该文提出将Hashtag推荐任务建模成小样本学习任务。同时,结合用户使用Hashtag的偏好降低推荐的复杂度。在真实的推特数据集上的实验表明,与目前最优方法相比,该模型不仅可以取得更好的推荐结果,而且表现得更为鲁棒。  相似文献   

6.
针对高分辨率液晶显示器产品(liquid crystal display, LCD)质量在线检测需求,基于深度学习提出一种LCD缺陷自动检测方法。通过设计自适应浅层特征提取层,并引入稀疏卷积结构,多维度、多尺度的提取深层特征,采用迁移学习和深度卷积生成对抗生网络扩充数据强化训练,构建基于小样本学习的LCD表面缺陷检测模型。其特征在于,采用设计的自动分割与定位预处理软件将高分辨率图像划分成适于卷积神经网络学习的图像子块,并根据模型对图像子块的判定类别和定位坐标,同时获取多类型缺陷检测结果。实验结果表明,本文模型可以有效提高检出率,并减少漏检率。  相似文献   

7.
近年来,国家越来越重视林业的发展,而林业病害防治问题始终是林业发展过程中的一项重点工作.针对传统林业病害识别方法存在数据需求量大、模型易过拟合、部分病害类别采样困难,缺乏标准公开数据集等问题,提出了一种基于小样本学习的林业病害识别模型(DML-MB模型),实现了对于林业病害任务的识别.首先,利用从林业局获取的林业病害数据,整理并建立了7类,共210张林业病害图像数据集.其次,模型在训练分类器的过程中引入深度相互学习(DML)策略,让不同网络在训练时不断分享学习经验,提升了深度神经网络的性能.最后,删除分类器中的全连接层获得特征提取器并迁移到DML-MB模型的元学习网络中进行训练.实验结果表明, DML-MB模型在林业病害数据集上的1-shot和5-shot的测试精度分别为61.38%和73.56%,相较于主流的小样本模型,精度最高提升了2.78%和4.52%.  相似文献   

8.
针对现有的基于注意力机制的图像描述方法描述内容与图像关联度低的问题,提出一种基于目标检测与词性分析的图像描述算法。该方法在注意力机制的基础上,通过目标检测算法提取图片中的信息,使用带有注意力机制的循环神经网络对提取到的信息进行处理,生成图像描述语句。在生成单词的过程中,算法会预测每个单词的词性,根据不同的词性选择不同的神经网络,从而提升描述语句与原图像的关联度。实验结果表明,在多种客观描述评价标准中,本文算法生成的描述语句相对目前存在的算法均有不同程度提升,同时,在主观评价中也能够更准确流畅地描述图片的内容。  相似文献   

9.
一种基于Bayesian学习的彩色肺癌图像语义描述模型   总被引:4,自引:0,他引:4  
通过对Bayesian理论框架引入肺癌分类识别问题,提出一种基于Bayesian学习理论的彩色肺癌图像语义描述模型,该模型由原始图像层(raw image Layer,RIL),图像特征层(image feature layer,IFL),语义知识层(Semantic knowledge layer,SKL)以及语义描述算法SDA构成,基于此模型提出一种肺癌分类识别算法,并实现了一个肺癌分类识别系统,实验表明,该模型具较高的肺癌分类准确率,是行之有效的。  相似文献   

10.
图像语义的模型结构描述   总被引:2,自引:0,他引:2  
图像语义是研究图像模式识别与图像检索的一个新理论。如何有效地建立起图像语义的描述,图像的语义模型能够给出一个直观的、形象的描述,为研究图像语义奠定快速的、可靠的基础。文章从图像固有属性、图像对象和人为意识三方面就图像语义的模型作了一些探讨性研究,为进一步研究图像语义的描述奠定了基础。  相似文献   

11.
图像描述生成模型是使用自然语言描述图片的内容及其属性之间关系的算法模型.对现有模型描述质量不高、图片重要部分特征提取不足和模型过于复杂的问题进行了研究,提出了一种基于卷积块注意力机制模块(CBAM)的图像描述生成模型.该模型采用编码器-解码器结构,在特征提取网络Inception-v4中加入CBAM,并作为编码器提取图...  相似文献   

12.
随着深度学习技术的快速发展,许多研究者尝试利用深度学习来解决文本分类问题,特别是在卷积神经网络和循环神经网络方面,出现了许多新颖且有效的分类方法。对基于深度神经网络的文本分类问题进行分析,介绍卷积神经网络、循环神经网络、注意力机制等方法在文本分类中的应用和发展,分析多种典型分类方法的特点和性能,从准确率和运行时间方面对基础网络结构进行比较,表明深度神经网络较传统机器学习方法在用于文本分类时更具优势,其中卷积神经网络具有优秀的分类性能和泛化能力。在此基础上,指出当前深度文本分类模型存在的不足,并对未来的研究方向进行展望。  相似文献   

13.
随着深度学习的不断发展与图像数据的爆炸式增长,如何使用深度学习来获得更高压缩比和更高质量的图像逐渐成为热点研究问题之一。通过对近几年相关文献的分析与整理,将基于深度学习的图像压缩方法按照卷积神经网络、循环神经网络、生成对抗网络进行总结与分析,对不同种方法分别列举了具有代表性的实例,并对基于深度学习的图像压缩算法的常用训练数据集、评价指标进行了介绍,根据深度学习在图像压缩领域中的优势对其未来的发展趋势进行了总结与讨论。  相似文献   

14.
数据中心主机负载预测对于数据中心的资源调度和节能具有重要意义,但是目前缺乏一个通用模型以准确预测所有类型数据中心的主机负载情况。为了使主机负载预测模型具有一定的自适应性,提出一种基于深度循环神经网络编码器-解码器的多步在线预测模型。通过线上实时采集的能耗数据进行在线训练,同时设计一个在线监控模块,对模型的预测准确性进行实时监控和调整,使得该模型在不同数据中心中均能获得较准确的预测值。利用Google开源的时长为29天的数据中心主机负载数据集进行实验,结果表明,该模型的预测准确性接近离线训练,其预测性能优于ESN和LSTM模型。  相似文献   

15.
为提高脸部年龄预测的准确性,在深度学习的基础上提出一种可有效预测脸部年龄的算法.通过对人脸图像进行预处理,获取左眼、右眼、鼻子和嘴巴四个部分的局部图像,利用迁移TensorFlow深度学习库中的Inception V4模型,提取脸部图像四个部分的多尺度局部特征,并将提取的局部特征使用串联方式相连接以得到融合特征,再将不...  相似文献   

16.
深度神经网络在有着大量标注数据的图像识别任务上已经占据了统治地位,但是在只有少量标注数据的数据集上训练一个好的网络仍然是一个据有挑战性的任务.如何从有限的标注数据中学习已经成为了一个有着很多应用场景的热点问题.目前有很多解决小样本分类任务的方法,但是仍然存在识别准确率低的问题,根本原因是在小样本学习中,神经网络只能接收...  相似文献   

17.
大气散射模型与有雾图像及对应清晰图像间的映射模型不适配,导致使用大气散射模型进行图像去雾处理时,图像存在颜色偏差、纹理细节粗糙等问题。基于模拟生物视觉系统的反馈原理,提出一种端到端的循环生成对抗网络算法,以解决误差累积造成的去雾图像低质的问题。通过生成模块将循环神经网络的隐藏状态作为反馈信息,以指导低级模糊特征信息生成更加丰富的高级特征。循环结构能够保证先前的网络层可以使用到后面网络层的高级特征信息,从而减少误差累积。此外,该算法能够根据判别模块的损失来评估重建图像的质量。实验结果表明,与GCANet算法相比,所提算法在SOTS测试集上的平均峰值信噪比和结构相似性,在室内分别提升3.41%和0.57%,在室外分别提升3.48%和1.39%,且在真实世界的数据集上进行图像去雾后,在视觉上避免了颜色失真和光晕问题。  相似文献   

18.
鲁强  刘兴昱 《计算机应用》2018,38(7):1846-1852
针对单一事实类问答系统中问句和关系的语义匹配在小规模标注样本中难以获得较高准确率的问题,提出一种基于循环神经网络(RNN)的迁移学习模型。首先,使用基于RNN的序列到序列无监督学习算法,通过序列重构的方式在大量无标注样本中学习问句的语义空间分布,即词向量和RNN;然后,通过给神经网络参数赋值的方式,使用此语义空间分布作为有监督语义匹配算法的参数;最后,通过使用问句特征和关系特征计算内积的方式,在有标注样本中训练并生成语义匹配模型。实验结果表明,在有标注数据量较少而无标注数据量较大的环境下,与有监督学习方法Embed-AVG和RNNrandom相比,所提模型的语义匹配准确率分别平均提高5.6和8.8个百分点。所提模型通过预学习大量无标注样本的语义空间分布可以明显提高在小规模标注样本环境下的语义匹配准确率。  相似文献   

19.
近年来,由于大规模数据集的出现,图像语义分割技术得到快速发展。但在实际场景中,并不容易获取到大规模、高质量的图像,图像的标注也需要消耗大量的人力和时间成本。为了摆脱对样本数量的依赖,小样本语义分割技术逐渐成为研究热点。当前小样本语义分割的方法主要利用了元学习的思想,按照不同的模型结构可划分为基于孪生神经网络、基于原型网络和基于注意力机制三大类。基于近年来小样本语义分割的发展现状,介绍了小样本语义分割各类方法的发展及优缺点,以及小样本语义分割任务中常用的数据集及实验设计。在此基础上,总结了小样本语义分割技术的应用场景及未来的发展方向。  相似文献   

20.
针对目前知识图谱中存在关系事实缺失且对隐含知识挖掘不足等问题,提出一种基于多级关系路径语义组合的关系推理算法。将知识图谱嵌入到低维向量空间中,利用强化学习进行路径发现,使得路径中实体和关系对应的向量作为循环神经网络的输入,经过迭代学习输出多级关系路径语义组合的结果向量,并将结果向量与目标关系向量进行相似度计算,从而进行关系推理。在FB15K-237和NELL-995数据集上的实验结果表明,该算法事实预测精度分别为0.314和0.417,均优于PRA、TransE与TransH模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号