共查询到18条相似文献,搜索用时 78 毫秒
1.
人脸图像的年龄和性别识别是人脸分析的重要任务,在真实多变场景下完成识别依然面临挑战。改进深度卷积神经网络(Convolutional Neural Network,CNN),将首层大尺寸卷积核替换为级联3[×]3卷积核;采用跨连卷积层融合中层和高层抽象特征;加入Batch Normalization(BN)层,设置较高的学习率和较小的Dropout比率;采用1[×]1卷积核与全局平均池化(Global Average Pooling)取代全连接层。实验表明,所提方法与主流的年龄性别识别方法比较具有较好的识别率,在Adience数据集上,年龄识别精度达到89.8%,性别识别精度达到93.3%。 相似文献
2.
由于深度卷积网络(Convolutional Neural Network,CNN)具有良好特征学习的性质,它得到了研究者们重点关注,并且已被广泛应用。相比较于深度CNN在物体识别与分类等任务上所达到的出色效果,其在年龄预测与人物性别识别任务上的应用还远远不能令人满意。基于公安业务背景,设计了一个深度卷积网络模型,并在证件照和Adience数据集上训练该模型,从而将其应用在人物年龄预测和性别分类上。通过基于Tensorflow的实验表明,提出的深度卷积网络模型,对人物年龄的预测准确率可达到90%以上;性别分类的准确率也达到93%以上。这明显优于现有文献中的结果。 相似文献
3.
基于跨连卷积神经网络的性别分类模型 总被引:1,自引:0,他引:1
为提高性别分类准确率, 在传统卷积神经网络(Convolutional neural network, CNN)的基础上, 提出一个跨连卷积神经网络(Cross-connected CNN, CCNN)模型. 该模型是一个9层的网络结构, 包含输入层、6个由卷积层和池化层交错构成的隐含层、全连接层和输出层, 其中允许第2个池化层跨过两个层直接与全连接层相连接. 在10个人脸数据集上的性别分类实验结果表明, 跨连卷积网络的准确率均不低于传统卷积网络. 相似文献
4.
卷积神经网络是一种很好的特征提取器,但却不是最佳的分类器,而极限学习机能够很好地进行分类,却不能学习复杂的特征,根据这两者的优点和缺点,将它们结合起来,提出一种新的人脸识别方法。卷积神经网络提取人脸特征,极限学习机根据这些特征进行识别。本文还提出固定卷积神经网络的部分卷积核以减少训练参
数,从而提高识别精度的方法。在人脸库ORL和XM2VTS上进行测试的结果表明,本文的结合方法能有效提高人脸识别的识别率,而且固定部分卷积核的方式在训练样本少时具有优势。 相似文献
5.
人脸年龄估计由于在人机交互和安全控制等领域有潜在应用,因此得到了广泛关注。文中主要进行人脸年龄分组的研究,针对人脸年龄分类问题提出了一种基于集成卷积神经网络的年龄分类算法。首先,训练两个以人脸图像为输入的卷积神经网络,当用卷积神经网络直接提取人脸图像的特征时,主要对 深度的全局特征 进行提取。为了补充人脸图像的局部特征,尤其是纹理信息,将提取的LBP(Local Binary Pattern)特征作为另一个网络的输入。最后,为了结合人脸的全局特征和局部特征,将这3个网络进行集成。该算法在广泛使用的年龄分类数据集Group上取得了不错的效果。 相似文献
6.
7.
针对驾驶行为识别问题,利用智能手机传感器采集相应车辆的加速度、角速度信息,并用手机角度信息对原始数据进行矫正处理。传统的驾驶行为识别方法须事先对原始数据单元人为进行特征提取。为改善繁琐的人工特征提取方法,提出一种驾驶行为识别领域基于改进的卷积神经网络的特征提取方法。原始数据经过组合后,作为卷积神经网络的输入。通过改变卷积神经网络的损失函数,提高类内样本特征的相似度,再将提取的特征作为核极限学习机的输入。实验结果表明,该方法可有效识别车辆的静止、急加速、急减速、正常行驶、左转弯、右转弯等驾驶行为。 相似文献
8.
针对以往利用人脸图像单方面进行性别识别或年龄估计,提出了利用公共特征、私有特征同时进行性别识别与年龄估计.用对光照、尺度变化具有很强鲁棒性的Gabor小波变换提取人脸特征.降维后的有效人脸特征分成公共特征、私有特征两部分,公共特征用于性别识别,私有特征进行年龄估计.在FG-NET人脸库及自建OFID人脸库中用RBF神经网络进行了实验,取得了良好效果. 相似文献
9.
基于计算机视觉的人体行为识别技术是当前的研究热点,其在行为检测、视频监控等领域都有着广泛的应用价值。传统的行为识别方法,计算比较繁琐,时效性不高。深度学习的发展极大提高了行为识别算法准确性,但是此类方法和图像处理领域相比,效果上存在一定的差距。设计了一种基于DenseNet的新颖的行为识别算法,该算法以DenseNet做为网络的架构,通过2D卷积操作进行时空信息的学习,在视频中选取用于表征行为的帧,并将这些帧按时空次序组织到RGB空间上,传入网络中进行训练。在UCF101数据集上进行了大量实验,实验准确率可以达到94.46%。 相似文献
10.
针对目前自然语言处理研究中,使用卷积神经网络(CNN)进行短文本分类任务时可以结合不同神经网络结构与分类算法以提高分类性能的问题,提出了一种结合卷积神经网络与极速学习机的CNN-ELM混合短文本分类模型。使用词向量训练构成文本矩阵作为输入数据,然后使用卷积神经网络提取特征并使用Highway网络进行特征优化,最后使用误差最小化极速学习机(EM-ELM)作为分类器完成短文本分类任务。与其他模型相比,该混合模型能够提取更具代表性的特征并能快速准确地输出分类结果。在多种英文数据集上的实验结果表明提出的CNN-ELM混合短文本分类模型比传统机器学习模型与深度学习模型更适合完成短文本分类任务。 相似文献
11.
随着多旋翼无人机引入输电线路巡检作业后,对巡线人员通过图像判断线路上设备是否有缺陷提出了新的挑战。为了帮助巡线人员做出准确决策,提高发现缺陷的能力,基于深度卷积神经网络,搭建了适用于无人机图像识别的输电线路缺陷识别网络模型。首先详细描述了输电线路缺陷识别图像数据库的建立过程,然后通过分析对比三个预训练前端网络的性能及多个参数对网络模型识别准确率的影响,得到基于Faster R-CNN的输电线路缺陷最优识别网络模型。经过测试集验证,提出的缺陷识别网络模型的识别准确率达到了90%以上,单张图片耗时达到了毫秒级,在识别准确率和耗时上均明显优于其他识别网络模型,为实际巡线工作中的输电线路缺陷判别提供智能有效的决策依据,是机器学习在智能电网中应用的有益探索。 相似文献
12.
13.
针对目前普通卷积神经网络(CNN)在表情和性别识别任务中出现的训练过程复杂、耗时过长、实时性差等问题,提出一种深度可分卷积神经网络的实时人脸表情和性别识别模型。首先,利用多任务级联卷积网络(MTCNN)对不同尺度输入图像进行人脸检测,并利用核相关滤波(KCF)对检测到的人脸位置进行跟踪进而提高检测速度。然后,设置不同尺度卷积核的瓶颈层,用通道合并的特征融合方式形成核卷积单元,以具有残差块和可分卷积单元的深度可分卷积神经网络提取多样化特征,并减少参数数量,轻量化模型结构;使用实时启用的反向传播可视化来揭示权重动态的变化并评估了学习的特征。最后,将表情识别和性别识别两个网络并联融合,实现表情和性别的实时识别。实验结果表明,所提出的网络模型在FER-2013数据集上取得73.8%的识别率,在CK+数据集上的识别率达到96%,在IMDB数据集中性别分类的准确率达到96%;模型的整体处理帧率达到80 frame/s,与结合支持向量机的全连接卷积神经网络方法所得结果相比,有着1.5倍的提升。因此针对数量、分辨率、大小等差异较大的数据集,该网络模型检测快,训练时间短,特征提取简单,具有较高的识别率和实时性。 相似文献
14.
当年龄识别被看作是分类问题时,基于卷积神经网络(CNN)的方法通常直接采用一般图像分类的CNN进行年龄识别,常常忽略了进行人脸年龄识别时需要考虑的误分类代价问题,比如,将一个青年人误分类为中年人和老年人的代价是不同的。基于上述观察,提出一种基于代价敏感卷积神经网络(CS-CNN)的人脸年龄估计方法。具体来讲,基于期望类最大原则(Desired Class Maximum Principle, DCMP)提出了一种能够使CNN学习到鲁棒人脸特征的代价敏感交叉熵损失函数(CS-CE),最后通过理论与实验的方法进行验证。相较之前的人脸年龄识别方法,提升的效果是显著的。 相似文献
15.
提升卷积神经网络的泛化能力和降低过拟合的风险是深度卷积神经网络的研究重点。遮挡是影响卷积神经网络泛化能力的关键因素之一,通常希望经过复杂训练得到的模型能够对遮挡图像有良好的泛化性。为了降低模型过拟合的风险和提升模型对随机遮挡图像识别的鲁棒性,提出了激活区域处理算法,在训练过程中对某一卷积层的最大激活特征图进行处理后对输入图像进行遮挡,然后将被遮挡的新图像作为网络的新输入并继续训练模型。实验结果表明,提出的算法能够提高多种卷积神经网络模型在不同数据集上的分类性能,并且训练好的模型对随机遮挡图像的识别具有非常好的鲁棒性。 相似文献
16.
17.
为了进一步提高性别识别的准确率,提出了一种基于多层特征融合与可调监督函数机制的结合的卷积神经网络(L-MFCNN)模型,并将之用于人脸性别识别。与传统卷积神经网络(CNN)不同,L-MFCNN将多个浅层中间卷积层特征输出与最后卷积层特征输出相结合,融合多层卷积层的特征,不仅利用了深层卷积的整体语义信息,还考虑了浅层卷积的细节局部纹理信息,使得性别识别更加准确。此外L-MFCNN还引入具有可调目标监督函数机制的Large-Margin Softmax Loss作为输出层,利用其调节不同的间隔(margin)的机制来有效引导深层卷积网络学习,使得同种性别间的类内间距更小,不同性别间的类间距更大,获得更好的性别识别效果。在多个人脸数据集上的性别识别实验结果表明,L-MFCNN的识别准确率要高于其他传统的卷积网络模型。L-MFCNN模型也为将来的人脸性别识别研究提供了新的思路与方向。 相似文献
18.
由于人类情感的表达受文化和社会的影响,不同语言语音情感的特征差异较大,导致单一语言语音情感识别模型泛化能力不足。针对该问题,提出了一种基于多任务注意力的多语言语音情感识别方法。通过引入语言种类识别辅助任务,模型在学习不同语言共享情感特征的同时也能学习各语言独有的情感特性,从而提升多语言情感识别模型的多语言情感泛化能力。在两种语言的维度情感语料库上的实验表明,所提方法相比于基准方法在Valence和Arousal任务上的相对UAR均值分别提升了3.66%~5.58%和1.27%~6.51%;在四种语言的离散情感语料库上的实验表明,所提方法的相对UAR均值相比于基准方法提升了13.43%~15.75%。因此,提出的方法可以有效地抽取语言相关的情感特征并提升多语言情感识别的性能。 相似文献