共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
视频行人检测是计算机视觉的一个重要应用,本文利用深度学习检测近似垂直视角的行人,但若单纯检测行人,易受与行人语义相关的行人附属属性(如背包和帽子)的干扰,容易造成误检.本文提出一种基于更快区域卷积神经网络的联合语义行人检测方法:首先调整网络模型,增强对小目标的辨别力,使其可以有效的检测行人和行人的语义属性;然后利用空间关系建立行人及其语义属性的关联,合并行人与其语义信息,并对候选行人目标进行自适应得分调整,结合行人语义属性判断候选行人目标.大量的实验表明,本文的方法精度高,速度快,具有实用价值,且检出的行人与其语义属性还可用于后续的人数统计和行人行为分析. 相似文献
3.
4.
自主驾驶矿井机车需要实时检测和定位行驶前方的巷道行人,激光雷达等非视觉类方法成本高昂,而传统基于特征提取视觉类方法无法解决井下光照差且光线不均匀的问题。提出一种基于深度学习的井下巷道行人视觉定位算法。首先给出基于深度学习网络的系统整体结构;其次,搭建目标检测多层卷积神经网络(CNN),生成自主驾驶机车前方视野范围内行人的二维坐标及边界框的尺寸;再次,通过多项式拟合计算出图像中行人到机车之间的第三维距离;最后通过真实样本集实施模型训练、验证与测试。实验结果表明,所提算法的检测准确率达94%,速度达每秒25帧,测距误差小于4%,实现了实时高效的巷道行人视觉定位。 相似文献
5.
行人检测技术在智能交通系统、智能安防监控和智能机器人等领域均表现出了极高的应用价值,已经成为计算机视觉领域的重要研究方向之一。得益于深度学习的飞速发展,基于深度卷积神经网络的通用目标检测模型不断拓展应用到行人检测领域,并取得了良好的性能。但是由于行人目标内在的特殊性和复杂性,特别是考虑到复杂场景下的行人遮挡和尺度变化等问题,基于深度学习的行人检测方法也面临着精度及效率的严峻挑战。本文针对上述问题,以基于深度学习的行人检测技术为研究对象,在充分调研文献的基础上,分别从基于锚点框、基于无锚点框以及通用技术改进(例如损失函数改进、非极大值抑制方法等)3个角度,对行人检测算法进行详细划分,并针对性地选取具有代表性的方法进行详细结合和对比分析。本文总结了当前行人检测领域的通用数据集,从数据构成角度分析各数据集应用场景。同时讨论了各类算法在不同数据集上的性能表现,对比分析各算法在不同数据集中的优劣。最后,对行人检测中待解决的问题与未来的研究方法做出预测和展望。如何缓解遮挡导致的特征缺失问题、如何应对单一视角下尺度变化问题、如何提高检测器效率以及如何有效利用多模态信息提高行人检测精度,均是值得进一步... 相似文献
6.
赵巧花 《电脑编程技巧与维护》2022,(3):120-122
摄像机拍摄同一个行人受到光照、行为姿态等因素的影响,导致其外观出现明显的差别,为行人再识别研究带来一定的挑战.依托深度及度量学习提出行人再识别方法.基于深度学习对图像进行去雾处理,通过局部最大特征及距离度量学习完成特征提取以及距离计算.根据实验发现,所使用的行人再识别算法非常有效,具有较高的识别率和匹配率. 相似文献
7.
李博 《计算机工程与应用》2021,57(10):110-116
跨镜行人追踪是计算机视觉和视频监控公共安全体系构建等领域的重要课题.伴随大规模数据集的发展和深度学习网络的广泛研究,深度学习在跨镜行人追踪问题中取得了良好效果.然而在应用中,除了监控视频自身的不同摄像头、不同视角引起的不同视觉表象变化外,面向跨镜行人追踪的整体数据集偏小,具有标记的训练数据样本量更小,从而制约了基于深度... 相似文献
8.
针对行人跟踪算法中因行人遮挡而导致行人跟踪准确率低、跟踪速度慢的问题,论文提出了一种基于深度学习和颜色特征的行人跟踪算法。首先利用yolov5目标检测算法检测行人,得到带有行人框的视频帧,同时利用检测框坐标信息判断行人之间是否存在遮挡,若有遮挡,则把遮挡区域像素设为0,分割出非遮挡区域,将非遮挡区域转化为HSV颜色空间,量化HSV分量,构造颜色特征直方图,并表示为一维向量G。其次,以第一帧行人检测框坐标为基础构建行人跟踪模型,初始化跟踪对象,并根据行人质心变化预测行人位置。在公开数据集MOT-16数据集上测试,MOTA为49.78%,相比于Sort和DeepSort算法分别提高1.51%和0.33%,在IDF1分数上分别高于Sort和DeepSort算法7.07%和3.46%。跟踪速度比DeepSort提升24%。 相似文献
9.
鞠政 《数码设计:surface》2021,(1):205-206
行人再识别问题是目前在大型的智能化监控系统中常用的核心技术,通常应用于在智能化监控系统中搜寻与查找某些特定的目标人群,伴随着近些年来信息化技术、计算机视觉应用、深度学习等先进技术的深入发展,行人再识别问题已经逐渐从传统的模式朝着深度学习的方向继续探索式前进.基于此,本文从行人再识别问题研究的现状情况作为切入口,分析探究... 相似文献
10.
11.
现实情况中缺少大量有标签数据,导致有监督的行人再识别模型训练受到影响。此外,低层特征的缺乏语义特性限制了行人再识别在行人检索、罪犯追踪等中的应用。本文提出了一种基于深度学习与属性学习相结合的行人再识别方法,利用深度学习的无监督模型提取行人图像的本质特征,并引入"属性"概念增强特征的语义表达能力。首先采用卷积自动编码器进行无监督的特征提取,提取的特征然后交由多个属性分类器进行属性分类,并结合统计获得的属性类别映射关系表计算最终类别判定,最后在VIPeR和i-LIDS标准数据集上进行了测试,并与基于优化属性的行人再识别方法(Optimized attribute based re-identification,OAR)、显著性检测对应法(Salience detection correspondence,SDC)等进行了比较,结果表明本方法能够赋予行人再识别较好的语义性能,并在一定程度上提高了识别的准确率,同时获得了较好的零训练样本识别效果。 相似文献
12.
视觉多目标跟踪是计算机视觉领域的热点问题,然而,场景中目标数量的不确定、目标之间的相互遮挡、目标特征区分度不高等多种难题导致了视觉多目标跟踪现实应用进展缓慢.近年来,随着视觉智能处理研究的不断深入,涌现出多种多样的深度学习类视觉多目标跟踪算法.在分析了视觉多目标跟踪面临的挑战和难点基础上,将算法分为基于检测跟踪(Det... 相似文献
13.
对于一些较为流行的应用,例如视频场景监控,对行人的长期有效跟踪是应用的基础.尽管对目标检测与跟踪的相关技术研究已经有了很长的历史,但是如何实时并较为准确地实现目标行人跟踪目前仍然是一个活跃的研究领域.基于多粒度的思想,提出了一种改进的行人跟踪算法,将卷积特征与底层颜色特征结合,对基于深度学习的跟踪算法GOTURN(generic object tracking using regression networks)得到的跟踪结果进行判断决策,结合目标检测对跟踪结果进行修正.实验结果表明:与单一的跟踪算法相比,多粒度决策的跟踪算法能够更加准确地对目标行人进行跟踪,可以显著提高跟踪精度. 相似文献
14.
单目标行人跟踪是计算机视觉目标跟踪领域最基础、也是研究最广泛的任务之一,而目前大多数使用的相关滤波类算法和深度学习类算法则分别在跟踪精度和跟踪实时性上存在不足.针对上述问题,本文提出一种将目标图像的深浅特征融合的实时单目标行人跟踪方法.算法利用卡尔曼滤波器预测目标位置,通过计算四分颜色直方图提取目标的浅层颜色特征,并获得预测相似性以判定预测的可靠性.使用YOLOv4模型作为检测器,提取目标深度特征并分别计算运动信息和外观信息的距离度量,同时提取浅层颜色特征计算得到相似距离度量,通过特征距离度量的加权融合对检测目标进行匹配与更新.最后,利用提出的轨迹更新策略协调预测和检测的调用关系,达到准确性与实时性的平衡.算法在OTB100和LaSOT数据集上进行了测试实验,结果表明:所提算法的跟踪准确率分别达到0.581和0.453,在GPU上分别能达到33.64 FPS和35.32 FPS的跟踪速度,满足实时跟踪的要求. 相似文献
15.
深度学习理论在计算机视觉中的应用日趋广泛,在目标分类、检测领域取得了令人瞩目的成果,但是深度学习理论在目标跟踪领域的早期应用中,由于存在跟踪时只有目标为正样本,缺乏数据支持,对位置信息依赖程度高等问题,因而应用效果并不理想,传统方法仍占据主流地位.近年来,随着技术的不断发展,深度学习在目标跟踪方向取得了长足的进步.本文首先介绍了目标跟踪技术的基本概念和主要方法,然后针对深度学习在目标跟踪领域的发展现状,从基于深度特征的目标跟踪和基于深度网络的目标跟踪两方面重点阐述了深度学习在该领域的应用方法,并对近期较为流行的基于孪生网络的目标跟踪进行了详细介绍.最后对近年来深度学习在目标跟踪领域取得的成果,以及未来的发展方向作了总结和展望. 相似文献
16.
在目标跟踪中, 大部分算法都是假设目标亮度不变或者目标子空间不变, 然而, 这些假设在实际场景中并不一定满足, 特别是当目标和背景都发生较大变化时, 目标容易丢失. 针对这种情况, 本文从直推学习的角度重新描述跟踪问题, 并提出一种鲁棒的目标跟踪方法.为获得更好的跟踪效果, 目标当前状态估计不仅要逼近目标模型, 而且要与以前的结果具有相同的聚类. 本方法利用目标模型对跟踪问题进行全局约束, 利用以前的结果约束状态局部分布, 构造代价函数. 将以前的状态估计作为正样本, 当前的候选状态作为未标记样本, 以所有样本为顶点建立图, 同时学习目标的全局外观模型和所有状态的局部聚类结构. 最后利用图拉普拉斯, 通过简单的线性代数运算, 获得代价函数的最优解. 在实验中, 选取包含各种情形的视频, 如目标的姿势改变、表情变化、部分遮挡以及周围光照的变化等, 利用本文提出的方法测试, 并和其他算法比较. 实验结果表明, 本文方法能够很好处理这些情形, 实现对目标的鲁棒跟踪. 相似文献
17.
基于深度学习的目标检测算法研究综述 总被引:1,自引:0,他引:1
传统的目标检测算法主要依赖于人工选取的特征来对物体进行检测。人工提取的特征对主要针对某些特定对象,比如有的特征适合做边缘检测,有的适合做纹理检测,不具有普遍性。近年来,深度学习蓬勃发展,在计算机视觉领域比如图像分类、目标检测、图像语义分割等方面取得了重大的进展。深度学习作为一种特征学习方法能够自动学习到目标的有用特征,避免了人工提取特征,同时能够保证良好的检测效果。本文首先介绍基于深度学习的目标检测算法研究进展,其次总结目标检测算法中常见的难题与解决措施,最后对目标检测算法的可能发展方向进行展望。 相似文献
18.
19.
害虫检测是害虫测报的关键步骤,对于害虫防治具有重要意义,也是保证农作物产量和品质的前提。近年来,随着卷积神经网络的迅速发展,害虫检测技术进入智能化时代,使用深度学习相关技术实现精确的害虫检测已成为研究人员重点关注的课题。为了促进深度学习害虫检测技术的发展,对检测算法和现有数据集进行综述。总结了当前面临的数据匮乏、小目标检测、多尺度检测和密集与遮挡检测等四大难点问题,并分析了其主要成因。重点针对以上难点问题,总结归纳了近年来提出的深度学习害虫检测算法的改进策略和技术细节,以及面向实际场景的应用算法,对比分析了各类算法的性能表现、改进策略的适用场景及其优缺点。从面向复杂检测场景、解决数据匮乏问题、模型增量更新和应用落地等方面分析并展望了未来的研究趋势。 相似文献