共查询到19条相似文献,搜索用时 62 毫秒
1.
极限学习机(ELM)会大量映射到激活函数的饱和区域,同时隐含层输入与输出远远不能获得共同的分布方式,导致泛化性能大打折扣.针对这一问题,研究了在高斯分布下优化激活函数中仿射变换(AT)的极限学习机,主要思想是在隐含层输入数据上引入新型的线性关系,利用梯度下降算法对误差函数中的缩放参数和平移参数进行优化,以满足隐含层输出能够高度服从高斯分布.基于高斯分布计算仿射参数的方法,能够保证隐节点相互独立的同时,也强调了高度的依赖关系.实验结果表明,在实际分类数据集和图像回归数据集中,隐含层输出数据不能很好地服从均匀分布,但服从高斯分布趋势,总体上能够达到更好的实验效果.与原始ELM算法和AT-ELM1算法比较,均有显著的改善. 相似文献
2.
危险源识别是民用航空管理的重要环节之一,危险源识别结果必须高度准确才能确保飞行的安全。为此,提出了一种基于深度极限学习机的危险源识别算法HIELM(Hazard Identification Algorithm Based on Extreme Lear-ning Machine),设计了一种由多个深层栈式极限学习机(S-ELM)和一个单隐藏层极限学习机(ELM)构成的深层网络结构。算法中,多个深层S-ELM使用平行结构,各自可以拥有不同的隐藏结点个数,按照危险源领域分类接受危险源状态信息完成预学习,并结合识别特征改进网络输入权重的产生方式。在单隐藏层ELM中,深层ELM的预学习结果作为其输入,改进了反向传播算法,提高了网络识别的精确度。同时,分别训练各深层S-ELM,缓解了高维数据训练的内存压力和节点过多产生的过拟合现象。 相似文献
3.
针对选择性集成逆向传播神经网络(GASEN-BPNN)模型训练学习速度慢,选择性集成极限学习机(GASEN-ELM)模型建模精度稳定性差等问题,提出一种基于遗传算法的选择性集成核极限学习机(GASEN-KELM)建模方法。该方法首先通过对训练样本进行随机采样获取子模型训练样本;然后采用泛化性、稳定性较佳的核极限学习机(KELM)算法建立候选子模型,通过标准遗传算法工具箱,依据设定阈值按进化策略优化选择最佳子模型;最后通过简单平均加权集成的方式获得最终GASEN-KELM模型。采用标准混凝土抗压强度数据验证了所提出方法的有效性,并与GASEN-BPNN和GASEN-ELM选择性集成算法进行比较,表明所提出方法可以在模型学习速度和建模预测稳定性方面获得较好的均衡。 相似文献
4.
赵建堂 《计算机工程与应用》2019,55(10):73-76
在海量数据输入背景下,为提升极限学习机算法的学习速度,降低计算机内存消耗,提出一种分割式极限学习机算法。将海量数据分割成[K]等份,分别训练极限学习机并获得单一外权,基于算术平均算子得到分割式极限学习机的综合外权;为避免异常数据对极限学习机输出结果的影响,采用有序加权平均算子融合单一极限学习机的输出信息,使分割式极限学习机的输出结果更为稳定。数值对比仿真显示:分割式极限学习机比传统极限学习机的学习速度、拟合精度和内存消耗都高,验证了该方法的有效性和可行性。 相似文献
5.
基于极限学习机(ELM)的多标记学习算法多使用ELM分类模式,忽略标记之间存在的相关性.为此,文中提出结合关联规则与回归核极限学习机的多标记学习算法(ML-ASRKELM).首先通过关联规则分析标记空间,提取标记之间的规则向量.然后通过提出的多标记回归核极限学习机(ML-RKELM)得出预测结果.若规则向量不为空,将规则向量与预测结果运算得出最终预测结果,否则最终结果即为ML-RKELM的预测结果.对比实验表明ML-ASRKELM与ML-RKELM性能较优,统计假设检验进一步说明文中算法的有效性. 相似文献
6.
为了提高极限学习机(ELM)网络的稳定性,提出基于改进粒子群优化的极限学习机(IPSO-ELM)。结合改进的粒子群优化算法寻找ELM网络中最优的输入权值、隐层偏置及隐层节点数。通过引入变异算子,增强种群的多样性,并提高收敛速度。为了处理大规模电力负荷数据,提出基于Spark并行计算框架的并行化算法(PIPSO-ELM)。基于真实电力负荷数据的实验表明,PIPSO-ELM具有更高的稳定性及可扩展性,适合处理大规模的电力负荷数据。 相似文献
7.
《计算机应用与软件》2019,(11)
针对现有的驾驶员安全带检测算法存在的定位精度差、实时性低的问题,提出一种基于YOLO和极限学习机相结合的驾驶员安全带检测模型。利用YOLO网络快速定位主驾驶区域,提取主驾驶区域特征,传递给极限学习机,训练成一个安全带检测分类器。实验结果表明,与传统的安全带检测算法相比,该方法在驾驶员安全带检测中准确率更高,检测速度大大提升。 相似文献
8.
为实现煤与瓦斯突出危险性的准确、快速地动态预测,提出构建基于KPCA-BA-ELM的突出危险性耦合预测模型。根据煤与瓦斯突出综合作用机理,确定突出各影响因素参数;利用核主成分分析(KPCA)对样本数据进行预处理,提取出主成分序列;利用蝙蝠算法(BA)优化极限学习机(ELM)模型,并与BA-ELM、ELM、SVM和BP等模型共同进行突出危险性预测,验证模型的优越性。结果表明:基于KPCA-BA-ELM突出危险性预测模型平均绝对误差为4.560,平均相对误差为3.478%,运行时间为1.286s,较其他模型具有精准的判识度和较高的泛化能力;能充分挖掘突出时空演变的内部隐含规律,有效诠释突出危险性与其影响因素间的非线性关系。 相似文献
9.
《微型机与应用》2020,(3)
主要研究的是神经网络的一种新型训练方式——极限学习机算法的优化和改进。首先通过与传统的神经网络算法的对比,介绍极限学习机算法的主要思想和流程,展现其特点及优势;其次,由于常规极限学习机在预测的精度上及运用的稳定上存在不小的缺陷,通过阐述几个智能寻优算法及优缺点比较,引出该文的重点量子遗传算法,并利用此算法去优化极限学习机的连接权值和阈值,选取最优的权值和阈值赋予测试网络,达到良好的使用效果;最后,介绍了改进极限学习机算法在MATLAB上进行实验仿真及结果分析的步骤与流程,实验结果说明改进后的算法相比于经典算法在回归问题的预测上有优势,预测精度更高,且结果更稳定;在分类问题的处理上,准确性也具有压倒性优势。 相似文献
10.
针对制鞋企业大多采用人工检测鞋面缺陷效率低、成本高的问题,本文提出一种基于正则极限学习机的鞋面缺陷图像识别方法.本方法首先采用工业相机采集鞋面缺陷图像,并提取其特征值;然后基于正则极限学习机算法对所提取特征值进行数据处理;最后对特征值进行训练识别.检测结果表明,正则极限学习机算法在复杂检测环境下具有高识别精度,识别成功... 相似文献
11.
12.
电流效率作为铝电解过程的重要参数,获得实时准确的测量结果对实现过程的有效控制至关重要。基于数据挖掘的思想,提出基于优化核极限学习机(KELM)的铝电解电流效率预测模型。通过分析铝电解机理,获得影响电流效率的过程参数,采用核主元分析法对试验数据进行降维,并用聚类算法剔除数据异常点,建立基于KELM的铝电解电流效率模型。使用鲸鱼优化算法与模拟退火的混合算法(WOASA)优化KELM模型的关键参数,从而提高模型的精度和泛化能力。通过实际生产数据进行仿真试验,将本文的方法与原始KELM、PSO-KELM、GWO-KELM、CGWO-KELM算法进行对比,结果证明了该预测模型的有效性,可以实现铝电解过程电流效率的准确预测。 相似文献
13.
为了进一步提高极限学习机的学习性能,将并行学习的思想引入单层极限学习机,并提出了基于并行学习的多层极限学习机模型。实验结果表明,该模型比传统的单层极限学习机、多层极限学习机以及传统基于误差反向学习的深度学习模型分类准确率高、收敛速度快。 相似文献
14.
高频地波雷达(High-frequency surface wave radar, HFSWR)在超视距舰船目标检测跟踪中有广泛应用.然而, HFSWR工作频段的电磁环境十分复杂, 舰船目标信号往往被淹没在各种噪声中.本文提出一种基于最优误差自校正极限学习机(Optimized error self-adjustment extreme learning machine, OES-ELM)的HFSWR海面目标识别算法.该算法利用二级级联分类策略, 可以显著提高目标的检测效率.首先利用灰度特征和线性分类器快速找出目标的潜在区域.然后利用Haar-like特征和OES-ELM分类器进一步辨识目标和海杂波.在OES-ELM中, 首先利用$L_{1/2}$正则算子裁剪隐层中的"微弱"神经元, 以得到隐层神经元的最优个数; 其次, 通过网络误差回传至隐含层使网络的隐层权值和输出层权值迭代更新至最优状态.实验结果表明:和标准ELM相比, 提出的OES-ELM网络具有更好的性能; 此外, 基于OES-ELM的HFSWR目标检测方法具有良好的实时性和目标检测性能. 相似文献
15.
极限学习机广泛用于分类、聚类、回归等任务中,但在处理类不平衡分类问题时,前人未充分考虑样本先验分布信息对分类性能的影响。针对此问题,本文提出耦合样本先验分布信息的加权极限学习机(Coupling sample Prior distribution Weighted Extreme Learning Machine,CPWELM)算法。该算法基于加权极限学习机,充分探讨不同分布样本点的重要程度,以此构造代价矩阵,进而提升分类器性能。本文通过12个不平衡数据集,对CPWELM算法的可行性及有效性进行了验证。结果表明,相比同类其他算法,CPWELM算法的性能更优。 相似文献
16.
研究基于极限学习机(ELM)的XML文档分类方法。为优化文档的相似性计算,在结构链接向量模型的基础上,提出一种改进的特征向量模型RS-VSM,将有效的结构化信息合并到向量模型中。应用ELM对XML文档进行分类,为提高ELM分类的准确率,提出一种基于投票机制的Voting-ELM算法。实验结果证明,该算法的分类效果较优。 相似文献
17.
为了对网络监视领域中样本进行预测和相关处理,大多数研究在计算基线时都忽略了样本的概率特征,未能结合样本的数据分布,对样本进行相关的处理,忽略了利用样本的周期特性和数据分布对样本进行相关处理的改进空间.因此,本文分析样本历史数据的噪音,通过引入高斯过程机器学习方法,提出基于周期样本的高斯过程机器学习方法,通过采用复合核函数,实现了网络主动监控中的基线计算.首先对"周期数据"进行聚类处理,同时将核函数拆分为全局核函数部分和局部核函数部分,使用聚类点训练全局核函数部分;使用局部点训练局部核函数.通过实验,与其它算法相比大大提高了效率,而且保证了近似的准确性.最终保障网络安全、提升网络性能和用户满意度. 相似文献
18.
19.
针对单一软件可靠性模型适应性不强和数据驱动模型稳定性较差的问题,本文选取3种典型软件可靠性模型作为基模型,利用极限学习机对基模型的预测结果进行加权优化,得到组合软件可靠性模型,实现经典软件可靠性模型和人工智能算法的有机结合。通过对3组失效数据进行仿真实验,并与单一模型、基于其他神经网络算法的组合模型以及数据驱动模型的预测结果进行对比,验证了本文模型能够有效地提升预测精度和模型的适应性。 相似文献