共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
随着移动边缘计算的兴起,如何处理边缘计算任务卸载成为研究热点问题之一。针对多任务-多边缘服务器的场景,本文首先提出一种基于能量延迟优化的移动边缘计算任务卸载模型,该模型考虑边缘设备的剩余电量,使用时延、能耗加权因子计算边缘设备的总开销,具有延长设备使用时间、减少任务卸载时延和能耗的优点。进一步提出一种基于改进遗传算法的移动边缘计算任务卸载算法,将求解最优卸载决策的问题转化为求解种群最优解的问题。对比仿真实验结果表明,本文提出的任务卸载模型和算法能够有效求解任务卸载问题,改进后的任务卸载算法求解更精确,能够避免局部最优解,利于寻找最优任务卸载决策。 相似文献
3.
在过去的近10年中,人工智能相关的服务和应用大规模出现,它们要求高算力、高带宽和低时延.边缘计算目前被认为是这些应用最适合的计算模式,尤其是视频分析相关应用.研究多服务器多用户异构视频分析任务卸载问题,其中用户选择合适的边缘服务器,并将他们的原始视频数据上传至服务器进行视频分析.为了有效处理众多用户对有限网络资源的竞争和共享,并且能够获得稳定的网络资源分配局面,即每个用户不会单方面地改变自己的任务卸载决策,该多服务器多用户异构视频分析任务卸载问题被建模为一个多玩家的博弈问题.基于最小化整体时延的优化目标,先后研究非分布式视频分析场景和分布式视频分析场景两种情形,分别提出基于博弈论的潜在最优服务器选择算法和视频单元分配算法.通过严格的数学证明,两种情形下提出的算法均可以达到纳什均衡,同时保证较低的整体时延.最后,基于真实数据集的大量实验表明,所提方法比其他现有算法降低了平均26.3%的整体时延. 相似文献
4.
针对传统的集中式网络架构存在链路负载过重、时延较长的问题,将服务器下放至靠近用户端的移动边缘计算概念孕育而生.在移动边缘计算系统中,任务卸载调度策略的好坏影响到系统时延和用户体验,因此任务卸载调度问题依旧是移动边缘计算领域中的研究热点.在移动边缘计算的多用户多核系统中,该文对用户的多个独立任务的调度策略与功率分配进行了... 相似文献
5.
无人驾驶汽车由于其有限的电池寿命和计算能力,难以在保证续航的前提下满足一些时延敏感任务或密集任务的处理需求。为解决该问题,在移动边缘计算(mobile edge computing,MEC)的背景下,提出了一种基于深度Q网络(deep Q-network,DQN)的无人驾驶任务卸载策略。首先,定义了一个基于任务优先级的车—边—云协同任务卸载模型,其需要通过联合优化车辆计算能力与任务卸载策略以获取系统最小延迟和能耗。由于该问题是个混合整数非线性规划问题,所以分两步对其进行求解—通过数学推导得出了最优车辆计算能力的解析解,之后在其数值固定条件下,基于DQN算法获得了任务最佳卸载策略。最后,综合SUMO、PyTorch和Python等工具建立了仿真模型,比较了DQN算法和其他三种算法在任务负载、MEC服务器计算能力以及能耗权重系数变化情况下的性能,实验结果验证了所提策略的可行性和优越性。 相似文献
6.
在移动边缘计算(mobile edge computing, MEC)系统中,用户的卸载策略会影响能耗和计算成本,进而影响用户效益.然而,目前多数研究未考虑边缘服务器随机分布场景中用户的卸载策略和资源请求策略对效益的影响.针对该问题,提出了一种基于改进双重拍卖算法的计算卸载和资源分配策略.首先,该策略将用户与边缘服务器之间的交互过程建模为Stackelberg博弈,并且证明了在该博弈内存在唯一纳什均衡点;其次,计算出用户对于不同服务器的卸载意愿以及计算资源请求量,并将用户与最优服务器进行拍卖;最后,采用遍历法交换上一轮拍卖中部分交易中的用户与服务器,以实现系统整体效益最优.仿真实验结果表明,与其他基准算法相比,所提算法在服务器随机分布场景下提高了33.4%的系统用户总效益,有效降低系统损失. 相似文献
7.
8.
移动边缘计算将边缘服务器部署到无线局域网侧,将部分计算密集任务卸载到边缘云服务器,从而缩短计算服务与移动设备的距离,降低数据传输成本.考虑移动边缘计算(MEC)环境下的计算任务分配问题,通过探索用户体验敏感度的异质性,建立CPU运算周期数-数据量-价格的三元组合约模型,提出基于合约理论的计算任务分配策略,以最大化云服务商的利润为目标,同时保证移动用户的非负效益.分别讨论完整信息场景下和统计信息场景下的最优合约设计策略.仿真结果验证了所提出方案可以有效实现计算任务的卸载. 相似文献
9.
10.
边缘计算通过在靠近用户的网络边缘侧部署计算和存储资源,使用户可将高延迟、高耗能应用程序卸载到网络边缘侧执行,从而降低应用延迟和本地能耗. 已有的卸载研究通常假设卸载的任务之间相互独立,且边缘服务器缓存有执行任务所需的所有服务. 然而,在真实场景中,任务之间往往存在依赖关系,且边缘服务器因其有限的存储资源只能缓存有限的服务. 为此,提出一种在边缘服务器计算资源和服务缓存有限的约束下,权衡时延和能耗(即成本)的依赖性任务卸载方法. 首先,松弛研究问题中的约束将其转换为凸优化问题;采用凸优化工具求最优解,并用解计算卸载任务的优先级. 然后,按照优先级将任务卸载到成本最小的边缘服务器,若多个依赖任务卸载到不同的边缘服务器,为了使总成本最小,则采用改进粒子群算法求解边缘服务器的最佳传输功率. 最后,为了验证所提方法的有效性,基于真实数据集进行了充分的实验. 实验结果表明,所提方法与其他方法相比能够降低总成本8%~23%.
相似文献11.
12.
边缘计算技术的发展为计算密集型业务提供了一种全新的选择,低能耗、低时延、实时处理等词语不断被提及,任务卸载引起了众多学者的注意.任务在本地执行还是卸载到服务器上执行,以及卸载到哪一台服务器上执行成为必须要解决的问题.在多智能体环境中提出一种新的目标函数,并构建数学模型;建立马尔可夫决策过程,定义动作、状态空间以及奖励函... 相似文献
13.
14.
车辆边缘计算环境下任务卸载研究综述 总被引:3,自引:0,他引:3
计算密集和延迟敏感型车辆应用的出现对车辆设备有限的计算能力提出了严峻的挑战,将任务卸载到传统的云平台会有较大的传输延迟,而移动边缘计算专注于将计算资源转移到网络的边缘,为移动设备提供高性能、低延迟的服务,因此可作为处理计算密集和延迟敏感的任务的一种有效方法.同时,鉴于城市地区拥有大量智能网联车辆,将闲置的车辆计算资源充分利用起来可以提供巨大的资源和价值,因此在车联网场景下,结合移动边缘计算产生了新的计算模式——车辆边缘计算.近年来,智能网联车辆数量的增长和新兴车辆应用的出现促进了对车辆边缘计算环境下任务卸载的研究,本文对现有车辆边缘计算环境下任务卸载研究进展进行综述,首先,从计算模型、任务模型和通信模型三个方面对系统模型进行梳理、比较和分析.然后介绍了最小化卸载延迟、最小化能量消耗和应用结果质量三种常见的优化目标,并按照集中式和分布式两种不同的决策方式对现有的研究进行了详细的归类和比较.此外,本文还介绍了几种常用的实验工具,包括SUMO、Veins和VeinsLTE.最后,本文围绕卸载决策算法复杂度、安全与隐私保护和车辆移动性等方面对车辆边缘计算任务卸载目前面临的挑战进行了总结,并展望了车辆边缘计算环境下任务卸载未来的发展方向与前景. 相似文献
15.
计算量较大的应用程序由于需要大量的能耗,因此在电池容量有限的移动设备上运行时十分受限。云计算迁移技术是保证此类应用程序在资源有限的设备上运行的主流方法。针对无线网络中应用程序任务图的调度和迁移问题,提出了一种快速高效的启发式算法。该算法将能够迁移到云端的任务都安排在云端完成这种策略作为初始解,通过逐次计算可迁移任务在移动端运行的能耗节省量,依次将节省量最大的任务迁移到移动端,并依据任务间的通讯时间及时更新各个任务的能耗节省量。为了寻找全局最优解,构造了适用于此问题的禁忌搜索算法,给出了相应的编码方法、禁忌表、邻域解以及算法终止准则。构造的禁忌搜索算法以提出的启发式解为初始解进行全局搜索,并实现对启发解的进一步优化。通过 实验 将所提方法与无迁移、随机迁移、饱和迁移3类算法进行对比,结果表明提出的启发式算法能够快速有效地给出能耗更小的解。例如,在宽度为10的任务图上,当深度为8时,无迁移、随机迁移与饱和迁移的能耗分别为5461、3357和2271能量单位,而给出的启发解对应的能耗仅为2111。在此基础上禁忌搜索算法又将其能耗降低到1942, 这进一步说明了提出的启发式算法能够产生高质量的近似解。 相似文献
16.
在万物互联的时代,数据量与计算需求飞速增长,促使应用部署方式由云计算模式向边缘计算模式演进,以解决带宽消耗严重和响应时延过高等问题。为推进面向边缘网络的任务卸载,需要解决应用服务提供商(ASP)与边缘计算提供商(ECP)之间的双向选择问题。针对这一问题,提出一种面向边缘计算的组合拍卖式任务卸载机制。首先建立系统模型,并对模型落地的关键问题进行说明,然后分析ECP的投标决策过程,证明选择最大化资源利用率的任务组合是NP完全问题,进而提出一种启发式任务选择算法。在此基础上,设计两种拍卖算法,单胜者拍卖和多胜者拍卖,分别适用于可信度优先和效率优先的场景。实验结果表明,相较于单项拍卖机制,所提出的方案提高ECP资源利用率达13%,同时增加ASP收益达37%。 相似文献