共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
译文质量估计是机器翻译领域中一个重要的子任务,该任务旨在不依靠参考译文的情况下对机器译文进行质量分析.当前,译文质量估计任务在汉英、英德机器翻译上有较好的表现,技术相对成熟.但是将模型应用到汉-越神经机器翻译中面临较多问题.尤其是译文质量估计模型在汉越平行数据中提取到的语言特征不能够充分地体现汉语与越南语之间的语言特点,加之汉语与越南语之间语序与句法结构也存在明显的差异.针对上述问题,本文采用统计对齐的方法对汉越之间结构差异进行建模,提取汉语与越南语之间的语言差异化特征,以提升汉越译文质量估计的效果.实验结果表明,融入语言差异化特征在汉-越和越-汉两个方向上较基线模型分别提升了0.52个百分点和0.35个百分点. 相似文献
3.
神经机器翻译在资源丰富语言对中取得良好性能,但这种性能的取得通常以大规模的平行语料为前提。在民族语言与汉语之间仅存在小规模双语平行句对的情况下,该文提出把机器翻译中的数据增强技术融入多任务学习框架提升翻译性能。首先,通过对目标端句子进行简单的变换(如词序调整、词替换等)以产生非准确的新句子增强噪声;其次,将上述扩增的伪平行语料作为辅助任务融入一个多任务学习框架中以充分训练编码器,并使神经网络将注意力转移到如何使编码器中的源语言句子拥有更丰富准确的表示。通过在全国机器翻译大会(CCMT 2021)蒙汉、藏汉以及维汉3种机器翻译评测数据集上进行6个方向的互译实验,结果表明,在上述民汉翻译任务上,该文方法均显著优于基线系统及多种常见的机器翻译数据增强方法。 相似文献
4.
由于汉语和越南语之间存在显著的语法差异及语料稀缺,汉越神经机器翻译任务面临名词翻译不准确的挑战.提出了一种新颖的多模态神经机器翻译方法,该方法融合了文本预训练模型和视觉语言联合预训练模型.通过文本预训练模型,能够捕获深层的语言结构和语义;而视觉语言联合训练模型则提供了与文本相关联的视觉上下文,这有助于模型更准确地理解和翻译名词.两种模型通过一个简洁高效的映射网络结合,并通过Gumbel门控模块动态地整合多模态信息,以优化翻译输出.在汉越及越汉翻译任务中,该方法相比传统Transformer模型分别提升了7.13和4.27的BLEU值. 相似文献
5.
机器翻译主要研究如何将源语言翻译为目标语言,对于促进民族之间的交流具有重要意义。目前神经机器翻译凭借翻译速度和译文质量成为主流的机器翻译方法。为更好地进行脉络梳理,首先对机器翻译的历史和方法进行研究,并对基于规则的机器翻译、基于统计的机器翻译和基于深度学习的机器翻译三种方法进行对比总结;然后引出神经机器翻译,并对其常见的类型进行讲解;接着选取多模态机器翻译、非自回归机器翻译、篇章级机器翻译、多语言机器翻译、数据增强技术和预训练模型六个主要的神经机器翻译研究领域进行重点介绍;最后从低资源语言、上下文相关翻译、未登录词和大模型四个方面对神经机器翻译的未来进行了展望。通过系统性的介绍以更好地理解神经机器翻译的发展现状。 相似文献
6.
7.
神经机器翻译是目前机器翻译领域的主流方法,而翻译记忆是一种帮助专业翻译人员避免重复翻译的工具,其保留之前完成的翻译句对并存储在翻译记忆库中,进而在之后的翻译过程中通过检索去重用这些翻译.该文基于数据扩充提出两种将翻译记忆与神经机器翻译相结合的方法:(1)直接拼接翻译记忆在源语句后面;(2)通过标签向量拼接翻译记忆.该文... 相似文献
8.
当前性能最优的机器翻译模型之一Transformer基于标准的端到端结构,仅依赖于平行句对,默认模型能够自动学习语料中的知识;但这种建模方式缺乏显式的引导,不能有效挖掘深层语言知识,特别是在语料规模和质量受限的低资源环境下,句子解码缺乏先验约束,从而造成译文质量下降。为了缓解上述问题,提出了基于源语言句法增强解码的神经机器翻译(SSED)方法,显式地引入源语句句法信息指导解码。所提方法首先利用源语句句法信息构造句法感知的遮挡机制,引导编码自注意力生成一个额外的句法相关表征;然后将句法相关表征作为原句表征的补充,通过注意力机制融入解码,共同指导目标语言的生成,实现对模型的先验句法增强。在多个IWSLT及WMT标准机器翻译评测任务测试集上的实验结果显示,与Transformer基线模型相比,所提方法的BLEU值提高了0.84~3.41,达到了句法相关研究的最先进水平。句法信息与自注意力机制融合是有效的,利用源语言句法可指导神经机器翻译系统的解码过程,显著提高译文质量。 相似文献
9.
在神经机器翻译过程中,低频词是影响翻译模型性能的一个关键因素。由于低频词在数据集中出现次数较少,训练经常难以获得准确的低频词表示,该问题在低资源翻译中的影响更为突出。该文提出了一种低频词表示增强的低资源神经机器翻译方法。该方法的核心思想是利用单语数据上下文信息来学习低频词的概率分布,并根据该分布重新计算低频词的词嵌入,然后在所得词嵌入的基础上重新训练Transformer模型,从而有效缓解低频词表示不准确问题。该文分别在汉越和汉蒙两个语言对四个方向上分别进行实验,实验结果表明,该文提出的方法相对于基线模型均有显著的性能提升。 相似文献
10.
该文对神经机器翻译中的数据泛化方法和短语生成方法进行研究。在使用基于子词的方法来缓解未登录词和稀疏词汇问题的基础上,提出使用数据泛化的方法来进一步优化未登录词和稀疏词汇的翻译,缓解了子词方法中出现的错译问题。文中对基于子词的方法和基于数据泛化的方法进行了详细的实验对比,对两种方法的优缺点进行了讨论和说明。针对数据泛化的处理方法,提出了一致性检测方法和解码优化方法。由于标准的神经机器翻译模型以词汇为基础进行翻译建模,因此该文提出了一种规模可控的短语生成方法,通过使用该文方法生成的源语言短语,神经机器翻译的翻译性能进一步提高。最终,在汉英和英汉翻译任务上,翻译性能与基线翻译系统相比分别提高了1.3和1.2个BLEU值。 相似文献
11.
依赖于大规模的平行语料库,神经机器翻译在某些语言对上已经取得了巨大的成功。无监督神经机器翻译UNMT又在一定程度上解决了高质量平行语料库难以获取的问题。最近的研究表明,跨语言模型预训练能够显著提高UNMT的翻译性能,其使用大规模的单语语料库在跨语言场景中对深层次上下文信息进行建模,获得了显著的效果。进一步探究基于跨语言预训练的UNMT,提出了几种改进模型训练的方法,针对在预训练之后UNMT模型参数初始化质量不平衡的问题,提出二次预训练语言模型和利用预训练模型的自注意力机制层优化UNMT模型的上下文注意力机制层2种方法。同时,针对UNMT中反向翻译方法缺乏指导的问题,尝试将Teacher-Student框架融入到UNMT的任务中。实验结果表明,在不同语言对上与基准系统相比,本文的方法最高取得了0.8~2.08个百分点的双语互译评估(BLEU)值的提升。 相似文献
12.
13.
无监督神经机器翻译仅利用大量单语数据,无需平行数据就可以训练模型,但是很难在2种语系遥远的语言间建立联系。针对此问题,提出一种新的不使用平行句对的神经机器翻译训练方法,使用一个双语词典对单语数据进行替换,在2种语言之间建立联系,同时使用词嵌入融合初始化和双编码器融合训练2种方法强化2种语言在同一语义空间的对齐效果,以提高机器翻译系统的性能。实验表明,所提方法在中-英与英-中实验中比基线无监督翻译系统的BLEU值分别提高2.39和1.29,在英-俄和英-阿等单语实验中机器翻译效果也显著提高了。 相似文献
14.
低资源型的汉越神经机器翻译中,数据稀疏问题是影响翻译性能的主要原因,目前缓解该问题的途径之一是通过语料扩充方法生成伪平行数据,并用于机器翻译模型的训练,伪平行数据生成方法主要有基于词的替换、单语数据回译和枢轴翻译3种.目前的研究集中于3种方法的单独使用,缺少方法间融合利用方面的研究工作,针对此问题,提出了融入双语词典的正反向枢轴方法,利用英语作为枢轴语言,在汉到英到越正向枢轴的基础上,融入利用稀有词构建的汉-英和英-越双语词典,将汉语单语数据通过模型翻译成英语数据,再利用英-越模型将其翻译成越南语数据,其次进行越到英到汉反向枢轴翻译将越南语单语数据翻译为汉语,以此在2个方向上生成汉越伪平行数据,并利用语言模型对生成的伪平行数据进行筛选.汉-越翻译任务上的实验结果表明,提出的融入双语词典的正反向枢轴方法,能够产生更优的伪平行语料,进而显著提升汉越神经机器翻译任务的性能. 相似文献
15.
神经机器翻译领域中多层神经网络结构能够显著提升翻译效果,但是多层神经网络结构存在信息传递的退化问题。为了缓解这一问题,提出了层间和子层间信息融合传递增强的方法,增强多层神经网络的层与层之间信息传递的能力。通过引入“保留门”机制来控制融合信息的传递权重,将融合信息与当前层的输出信息连接共同作为下一层的输入,使得信息传递更加充分。在目前最先进的多层神经网络Transformer上进行相关的实验,在中英和德英翻译任务上的实验结果表明,该信息传递增强方法相比于基线系统,BLEU得分分别提高了0.66和0.42。 相似文献
16.
17.
神经机器翻译在语料丰富的语种上取得了良好的翻译效果,但是在汉语-越南语这类双语资源稀缺的语种上性能不佳,通过对现有小规模双语语料进行词级替换生成伪平行句对可以较好地缓解此类问题。考虑到汉越词级替换中易存在一词多译问题,该文对基于更大粒度的替换进行了研究,提出了一种基于短语替换的汉越伪平行句对生成方法。利用小规模双语语料进行短语抽取构建短语对齐表,并通过在维基百科中抽取的实体词组对其进行扩充,在对双语数据的汉语和越南语分别进行短语识别后,利用短语对齐表中与识别出的短语相似性较高的短语对进行替换,以此实现短语级的数据增强,并将生成的伪平行句对与原始数据一起训练最终的神经机器翻译模型。在汉-越翻译任务上的实验结果表明,通过短语替换生成的伪平行句对可以有效提高汉-越神经机器翻译的性能。 相似文献
19.
汉英机器翻译中基于实例的歧义结构消解 总被引:1,自引:0,他引:1
歧义是自然语言特别是汉语的显著特点和普遍现象,也是当前汉英机器翻译系统的主要处理难点之一。通过对其中一些常见汉语歧义结构的分析,提出一种基于实例的歧义结构消解方法。由于歧义结构的对应实例具有较高的“结构”上的代表性,通过与这些实例的相似性比较可以较准确地把握待消歧语段的内部结构。 相似文献