共查询到17条相似文献,搜索用时 63 毫秒
1.
为了识别出社交网络中的关键人物,需要对用户影响力进行评估。由于影响力是借助信息在网络中的扩散而逐步形成的,因此需首先对影响力传播过程进行建模;然后以该模型为基础,用标签表示影响力的所有者,以隶属度表示用户被影响的程度,利用多标签传播来模拟影响力传播的过程,实现了一种新的用户影响力评估算法MLPIA(Multi-label Propagation User Influence Asessment Algorithm);最后,在真实数据集上测验排名靠前的用户的影响力覆盖范围和紧密中心性,结果证明了该算法的合理性和有效性。 相似文献
2.
社交网络作为一种交往方式,已经深入人心。其用户数据在这个大数据时代蕴藏着大量的价值。随着Twitter API的开放,社交网络Twitter俨然成为一个深受欢迎的研究对象,而用户影响力更是其中的研究热点。PageRank算法计算用户影响力已经由来已久,但是它太依赖于用户之间的关注关系,排名不具备时效性。引入用户活跃度的改进PageRank算法,具备一定的时效性,但是不具有足够的说服力和准确性。研究了一种新的基于时间分布用户活跃度的ABP算法,并为不同时段的活跃度加以相应的时效权重因子。最后,以Twitter为研究对象,结合社交关系网,通过实例分析说明ABP算法更具时效性和说服力,可以比较准确地提高活跃用户的排名,降低非活跃用户排名。 相似文献
3.
社交网络影响最大化问题是指如何寻找网络中有限的初始节点,使得影响的传播范围最广。一些贪心算法可以得到较好的影响范围,但是因时间复杂度太高而不适用于大型社交网络。基于度中心性的启发式算法简单但准确度不高;基于介数中心性、接近中心性等全局指标的启发式算法可以较好地识别影响力最大的节点,但计算复杂度也过高。考虑网络节点深层次结构对影响扩散的作用并权衡计算复杂度与准确度,定义了3-layer局部中心度,以计算节点的潜在影响力值。基于线性阈值模型,启发选择一部分种子节点:每一次都选取潜在影响力最大的节点作为种子节点进行激活;运用贪心算法选取剩下的一部分种子节点:每一次都选取具有最大影响增量的节点作为种子节点进行激活。实验表明,该混合算法具有很好的激活范围以及非常低的时间复杂度。 相似文献
4.
5.
社交网络用户影响力在舆情演化、广告营销及政治选举等领域有着广泛应用,研究者在过去的工作中,通过分析和建模,在影响力方面取得了一定的成果,但还存在着定义不明晰、技术落后和应用缺乏等问题。文中明确提出了社交网络用户影响力的研究模型,将传统技术与先进技术结合,并据此梳理了该领域的相关文献,主要从用户、内容特征和深度学习技术的角度论述了基于社交网络的用户影响力的研究方法,并进一步划分成本质和邻域属性、情感分析和元数据、面向局部网络和基于用户及内容特征,还介绍了节点识别的方法,为该领域的学者提供有效且全面的参考。其次,文中还介绍了用户影响力建模方法在预测应用方面的数据集、评价指标和实验结果等,旨在预测下一个激活节点。最后对其未来的发展趋势作出展望。 相似文献
6.
社交网络平台信息传播迅速,为了有效地进行舆情预警,定量地评估用户在消息传播网络中重要性,将模糊综合评价方法引入用户影响力建模问题中. 通过对用户在社交平台上的行为分析,构造了包含用户活跃粉丝数以及平均转发数等五项指标在内的评价体系. 并针对传统的模糊综合评价算法在应用于计算评价指标权重方面的缺陷与不足,提出改进模糊合成算子的方法构建用户影响力评估模型. 利用新浪微博社交平台上的真实数据,结合对比实验和实际评估,改进的模糊合成算子能根据需求调整权重对评价结果的影响,同时该方法能较准确地反应社交网络中用户的实际影响力. 相似文献
7.
8.
9.
10.
随着信息技术飞速发展,社交网络逐渐占领了人们日常交往、娱乐和购物等主要平台。因此,大量围绕社交网络展开的研究也变得非常热门.现有的围绕社交网络用户行为展开的研究热点主要有:基于社交网络用户行为的用户影响力研究、基于用户行为的推荐系统研究、以及社交网络用户隐私方面的研究等。社交网络是互联网的主要组成模块之一,同时也是大数据时代的主要数据提供者之一,未来对于社交网络的研究会越来越受到学术界以及工业界的更多投入,本文对社交网络用户行为挖掘的研究现状、热点展开论述,并作出展望,提出一些目前尚缺深入研究的方向,以期对读者有所帮助。 相似文献
11.
12.
在已有PageRank算法构建的微博用户影响力评估模型中,存在用户自身属性信息欠缺以及在用户不活跃期间其影响力被误判下降的问题。为此,综合考虑用户自身的属性,基于用户的活跃度、认证信息及博文质量来确定其自身的基本影响力,通过引入用户博文的传播率挖掘用户的潜在影响力,结合用户不同好友的质量,基于改进的PageRank算法构建微博用户影响力评估算法。实验结果表明,与改进BWPR算法相比,该算法准确率、召回率和F值分别提高13.5%、10.1%和12.3%,能准确、客观地反映微博用户的实际影响力,可为社交网络中的意见领袖挖掘、信息传播和舆论引导等研究提供参考。 相似文献
13.
协同过滤作为目前应用最成功的个性化推荐技术,在电子商务、社交网络等领域得到了广泛应用。然而,当此类算法应用到个性化医疗推荐领域时,由于个人医疗行为本身的复杂性和多样性,出现了推荐准确率下降的问题。针对这一问题,提出一种融合多种用户行为的协同过滤推荐算法,使用权重因子来综合衡量不同用户行为对推荐质量的影响,并引入重合依赖度的概念来修正传统的相似度度量方法。在收集的Top-md数据集上的实验结果表明,该算法能够全方位表达用户的就医偏好和意愿,有效提高个性化医疗推荐系统的推荐质量。 相似文献
14.
15.
《计算机科学与探索》2017,(5):720-731
影响力最大化问题是在社交网络中寻找具有最大影响范围的节点集。针对启发式算法准确度相对较差的问题,现有的研究考虑了影响范围重合,但忽略了边缘贡献导致的节点影响力过量评估。重点研究了在考虑边缘贡献的情况下,如何选取影响范围最大的节点集合。采用启发式算法的思想,首先计算节点全局和邻近影响力来评估节点信息传播影响力,通过去除已选节点影响范围并更新网络的方式,消除边缘贡献对节点影响力评估的干扰,在独立级联模型基础上提出了基于边缘去重的节点影响力最大化算法。仿真结果表明所提出算法相比其他算法,能够有效增大节点信息传播影响范围。 相似文献
16.
针对社会网络中存在较多以度中心节点为中心并且具有多社区重叠节点的网络社区结构,提出了一种面向度中心性及重叠网络社区的两阶段发现算法。第一阶段发现初始社区:选取度最大的Top-k个节点作为候选中心节点,并将每个节点与其邻居节点形成候选初始社区,其中如果某候选社区与已形成的初始社区的重叠度低于阈值,则形成一个新的初始社区;第二阶段调整社区划分:通过偏离度机制进行调整,将偏离度最大值对应的节点划分到连接紧密的相应社区内,形成最终社区划分。实验表明,该方法不仅能够揭示网络中以某个节点为中心的密集的社区结构,还能有效处理初始社区不同程度的重叠问题。相比现有算法,所提方法对预先输入的候选初始社区数k值不敏感,并具有较高的准确性和灵活性。 相似文献
17.
基于用户聚类的异构社交网络推荐算法 总被引:11,自引:0,他引:11
相比传统的社交网络,基于弱关系的微博类社交网络具有显著的异构特征.根据特征可以将节点分为用户(消息订阅者)和主题(消息发布者)两类,面向用户推荐其感兴趣的主题成为了该类社交网络中推荐系统的主要目标之一,同时该类社交网络中普遍存在的数据稀疏性和冷启动现象成为了推荐系统面临的主要问题.文中提出一种基于两阶段聚类的推荐算法GCCR,将图摘要方法和基于内容相似度的算法结合,实现基于用户兴趣的主题推荐.与以往方法相比,该方法在稀疏数据和冷启动的情况下具有更好的推荐效果,此外,通过对数据集进行大量的离线处理,使得其较以往推荐方法具有更好的在线推荐效率.最后通过真实社交网络的数据对本方法进行了验证,同时分析了各参数对推荐效果的影响. 相似文献