首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
对于低等级的计算机视觉任务来说,图像去雨一直是一个热点问题.由于图像中雨线的密度不均一,导致单张图片中去雨成为极富有挑战性的问题.针对目标图像重点关注的两个部分:图像的整体结构和图像的细节,本文提出一种新颖的多流特征融合的卷积神经网络算法,通过多样的网络框架呈现优越的性能.该网络算法采用三条分支网络提取复杂多向的雨线特征,并运用级联的方式特征融合,通过与原图像结合去除有雨图的雨线,再经过细节加强网络获得高质量的无雨图.在合成的数据集以及真实雨图集下的去雨性能表明,所提出的算法与现有的基于深度学习的去雨算法相比,能够在去除雨线的同时保留更多的细节,保证了图片的质量.  相似文献   

4.
雨天环境下的雨线导致图像内容被遮挡,严重影响人眼的视觉效果和后续系统的处理性能。目前主流的深度学习方法为了提升处理性能,均以复杂的网络结构和较大的参数量为代价,导致相关方法难以服务于实际应用。为此,文中提出一种新的深度邻近连接网络结构。它通过关注深度网络中所学特征图之间的关系,采用融合操作将邻近特征图进行连接,以获得更加丰富和有效的特征表示。实验数据表明,所提方法在3个公开合成数据集及真实有雨图像上的主客观处理效果、模型参数量和运行时间等相关性能都有所提升。在合成数据集Rain100H上的平均结构相似性(SSIM)值达到0.84,在合成数据集Rain100L和Rain1 200上的平均SSIM值分别达到0.96和0.91。在真实有雨图像上,所提方法在有效去除前景雨线的同时,能够保护更完整的背景图像信息,从而获得更好的主观视觉效果。相比于同时期的深度学习方法JORDER,文中方法在保证相近的处理效果的前提下,模型参数量和CPU运行时间分别降低了一个和两个数量级。实验数据充分说明,通过将网络中邻近特征图进行融合,能够获取更加有效的特征表示。因此,所提方法虽然仅使用较少的模型参数和简洁的神经...  相似文献   

5.
目的 现有的去雨方法存在去雨不彻底和去雨后图像结构信息丢失等问题。针对这些问题,提出多尺度渐进式残差网络(multi scale progressive residual network, MSPRNet)的单幅图像去雨方法。方法 提出的多尺度渐进式残差网络通过3个不同感受野的子网络进行逐步去雨。将有雨图像通过具有较大感受野的初步去雨子网络去除图像中的大尺度雨痕。通过残留雨痕去除子网络进一步去除残留的雨痕。将中间去雨结果输入图像恢复子网络,通过这种渐进式网络逐步恢复去雨过程中损失的图像结构信息。为了充分利用残差网络的残差分支上包含的重要信息,提出了一种改进残差网络模块,并在每个子网络中引入注意力机制来指导改进残差网络模块去雨。结果 在5个数据集上与最新的8种方法进行对比实验,相较于其他方法中性能第1的模型,本文算法在5个数据集上分别获得了0.018、0.028、0.012、0.007和0.07的结构相似度(structural similarity, SSIM)增益。同时在Rain100L数据集上进行了消融实验,实验结果表明,每个子网络的缺失都会造成去雨性能的下降,提出的多尺度渐进式网...  相似文献   

6.
目的 因为有雨图像中雨线存在方向、密度和大小等各方面的差异,单幅图像去雨依旧是一个充满挑战的研究问题。现有算法在某些复杂图像上仍存在过度去雨或去雨不足等问题,部分复杂图像的边缘高频信息在去雨过程中被抹除,或图像中残留雨成分。针对上述问题,本文提出三维注意力和Transformer去雨网络(three-dimension attention and Transformer deraining network,TDATDN)。方法 将三维注意力机制与残差密集块结构相结合,以解决残差密集块通道高维度特征融合问题;使用Transformer计算特征全局关联性;针对去雨过程中图像高频信息被破坏和结构信息被抹除的问题,将多尺度结构相似性损失与常用图像去雨损失函数结合参与去雨网络训练。结果 本文将提出的TDATDN网络在Rain12000雨线数据集上进行实验。其中,峰值信噪比(peak signal to noise ratio,PSNR)达到33.01 dB,结构相似性(structural similarity,SSIM)达到0.927 8。实验结果表明,本文算法对比以往基于深度学习的神经网络去雨算法,显著改善了单幅图像去雨效果。结论 本文提出的TDATDN图像去雨网络结合了3D注意力机制、Transformer和编码器—解码器架构的优点,可较好地完成单幅图像去雨工作。  相似文献   

7.
雨滴会降低户外拍摄图像质量,影响图像视觉效果及后续图像分析工作。针对目前去雨算法存在颜色失真、去雨过度化等问题,为了提高计算机视觉算法在中、大雨天气下的准确性,提出多尺度DenseTimeNet(密集时间序列卷积神经网络)的单幅图像去雨方法。该网络由多个尺度DenseTimeNetBlock(密集时序卷积网络密集块)组成,通过卷积下采样技术得到不同尺度下雨线特征信息与降低图像维度后利用时域卷积寻找的时间维度特征信息。在不同维度下学习雨景图和无雨图之间的映射关系,网络主体由密集卷积块和残差网络组成,可加速算法收敛速度,更深度学习图像纹理特征,使特征信息在网络结构进行深度传播,可以更好地复原残损图像。在不同方向,不同大小的雨滴图像上对所提方法进行验证,实验结果表明,该方法相较于现有算法,图像去雨效果良好。  相似文献   

8.
马彦博  李琳  陈缘  赵洋  胡锐 《图学学报》2022,43(4):651-658
为了减少视频的存储和传输开销,通常对视频进行有损压缩处理以减小体积,往往会在视频中引入各类不自然效应,造成主观质量的严重下降。基于单帧的压缩图像复原方法仅利用当前帧有限的空间信息,效果有限。而现有的多帧方法则大多采用帧间对齐或时序结构来利用相邻帧信息以加强重建,但在对齐性能上仍有较大的提升空间。针对上述问题,提出一种基于多帧时空融合的压缩视频复原方法,通过设计的深度特征提取块和自适应对齐网络实现更优的对齐融合,充分地利用多帧时空信息以重建高质量视频。该方法在公开测试集上(HEVC HM16.5低延时P配置)优于所有对比方法,并在客观指标上(峰值信噪比PSNR)相比于目前最先进的方法 STDF取得了平均0.13 dB的提升。同时,在主观比较上,该方法也取得了领先的效果,重建出更干净的画面,实现了良好的压缩不自然效应去除效果。  相似文献   

9.
由于密度不同的雨对图像造成的遮挡不同,图像去雨一直都是一项极具挑战性的任务。目前,基于深度学习的图像去雨算法已经成为主流。然而,多数深度学习的架构都是通过堆叠卷积层来设计的,执行去雨任务后图像仍存在着大小不一的雨痕,这些方法并不能很好地关注训练中雨图的局部信息和上下文信息。为了解决上述问题,本文设计一种基于多通道分离整合的卷积神经网络用于图像去雨。第一步通过通道分离,再利用卷积层间的层级连接,构成多尺度模块,最终将不同通道的输出进行整合。该模块可以增大感受野,探索特征图之间的空间信息,更好地提取特征。第二步利用渐进网络来反复计算挖掘上下文信息,能够很好关联到全局特征。整体模型易于实施,可以端对端训练。在常用的数据集以及自建的自动驾驶雨天数据集上的大量实验表明,本文方法比现有方法取得了明显的改进。  相似文献   

10.
图像去雨算法通过对有雨图像进行分析和处理从而去除雨水条纹,恢复干净的背景场景,有助于提升计算机视觉任务识别精度,因此成为当下的研究热点。为系统地了解该领域的研究现状和发展趋势,首先介绍了典型的雨水合成模型,其次从基于模型驱动和基于数据驱动两个方面重点分析了典型图像去雨算法模型和方法;之后比较了去雨图像质量评价指标及雨水数据集;最后,对单幅图像去雨算法未来发展趋势进行了展望。  相似文献   

11.
雨天等恶劣天气将造成图像质量的严重退化,进而影响计算机视觉算法的准确性.为了更好地提取多尺度雨痕特征,恢复图像含有的重要细节信息,提出一种基于多分辨率上下文聚合网络的单幅图像去雨方法.首先利用混洗操作将单一分辨率输入图像转化为多空间分辨率的输入图像,在低空间分辨率中使网络迅速扩大接受场,而在高空间分辨率下提取更加精细的...  相似文献   

12.
Removing rain from a single image is a challenging task due to the absence of temporal information. Considering that a rainy image can be decomposed into the low-frequency (LF) and high-frequency (HF) components, where the coarse scale information is retained in the LF component and the rain streaks and texture correspond to the HF component, we propose a single image rain removal algorithm using image decomposition and a dense network. We design two task-driven sub-networks to estimate the LF and non-rain HF components of a rainy image. The high-frequency estimation sub-network employs a densely connected network structure, while the low-frequency sub-network uses a simple convolutional neural network (CNN). We add total variation (TV) regularization and LF-channel fidelity terms to the loss function to optimize the two subnetworks jointly. The method then obtains de-rained output by combining the estimated LF and non-rain HF components. Extensive experiments on synthetic and real-world rainy images demonstrate that our method removes rain streaks while preserving non-rain details, and achieves superior de-raining performance both perceptually and quantitatively.   相似文献   

13.
成像设备在雨天拍摄图像时由于雨雾和雨条纹的存在会导致图像质量严重退化,对后续图像处理性能造成极大影响.因此,图像的去雨算法研究引起了广泛关注,其中针对单幅图像的去雨算法由于没有先验知识的支持,面临较大挑战.近年来,深度学习因其高特征表示能力被应用在图像去雨算法研究中.本文基于小波变换,采取了一种深度学习与数字图像形态学处理相结合的算法来实现单幅图像去雨,具有训练参数少、训练时间短和去雨效果好等优点.首先对含雨图像进行小波变换,分为低频分量、水平高频分量、垂直高频分量和对角高频分量,然后对这4个分量分别构造深度学习神经网络,并在神经网络架构中根据雨的特征加入图像膨胀、腐蚀等形态学处理来进行去雨操作,大大简化了模型架构,并能取得较好的结果.  相似文献   

14.
雨天作为较常见的一种自然天气情况,会极大地影响户外视觉系统所拍摄到的图像和视频数据的成像质量并制约后续高级计算机视觉任务的性能;针对目前除雨算法存在伪影残留、细节丢失等问题,为了充分提取图像特征,有效去除雨条纹,提高除雨效率,提出一种新颖的单阶段深度学习除雨方法;采用高效卷积和跨尺度自注意力相结合的方式,弥补纯卷积网络无法满足的全局特征建模能力;嵌入多尺度空间特征融合模块,有效增加网络的感受野,增强网络对不同分布的雨条纹特征的学习能力;设计了一种混合损失函数,利用各损失函数的优势来弥补单一损失函数表现出来的缺陷;经过在不同类型数据集上的大量实验证明,该算法不仅能够有效去除雨条纹,充分保留背景细节,而且处理速度也有显著的提升。  相似文献   

15.
钟菲  杨斌 《计算机科学》2018,45(11):283-287
雨滴严重影响了图像的视觉效果和后续的图像处理应用。目前,基于深度学习的单幅图像去雨方法能够有效挖掘图像的深度特征,其去雨效果优于传统方法;然而,随着网络深度的增加,网络容易出现过拟合的现象,使得去雨效果遇到瓶颈。文中在继承深度学习优点的基础上,学习有雨/无雨图像之间的残差,然后将残差与源图像进行重构,从而获得无雨图像。该方式大幅增加了网络深度,并加快了算法的收敛速度。分别利用通过不同方式获取的雨滴图像对所提方法进行实验验证,并将该方法与当前最新的去雨滴方法作比较,结果表明所提算法的去雨效果更好。  相似文献   

16.
杨兵  刘晓芳  张纠 《计算机工程》2021,47(4):187-196
利用卷积神经网络(CNN)进行医学图像分割时,通常将分割问题抽象为特征表示和参数优化问题,但在上采样和下采样过程中容易丢失特征信息,导致分割效果不理想.设计包含三级特征表示层和特征聚合模块的深度特征聚合网络结构DFA-Net.通过三级特征表示层提取基础特征同时聚合中间特征和深层特征,从而以聚合深层特征弥补CNN上采样与...  相似文献   

17.
针对合成孔径雷达图像目标在背景复杂、场景较大、干扰杂波较多情况下检测困难的问题,设计一种层数较少的卷积神经网络,在完备数据集验证其特征提取效果后,作为基础特征提取网络使用。在训练数据集中补充复杂的大场景下目标训练样本。同时设计一种多层次卷积特征融合网络,增强对大场景下小目标的检测能力。通过对候选区域网络和目标检测网络近似联合训练后,得到一个完整的可用于不同的复杂大场景下SAR图像目标检测的模型。实验结果表明,该方法在SAR图像目标检测方面具有较好的效果,在测试数据集中具有0.86的AP值。  相似文献   

18.
图像去雨是图像低等级任务中的热点问题,去雨滴又是图像去雨中很重要的一种情况,附着在玻璃或相机镜头上的雨滴会显著降低场景的可见性.因此,去除雨滴将有助于许多计算机视觉应用,特别是户外监控系统和智能驾驶系统.本文提出了一种用于单张图像去雨滴的轻量级网络算法(PRSEDNet),该网络算法采用递归计算,运用卷积长短期记忆网络...  相似文献   

19.
针对立体匹配在精细结构,尤其边缘处的误差较大的问题,提出了利用边缘引导特征融合和代价聚合的立体匹配算法。利用图像边缘引导不同尺度特征体加权融合,即对小尺度特征体的边缘处,大尺度特征体的非边缘处赋予更大权重,以获得表征能力更强的融合特征体。在代价聚合阶段弱化边缘处匹配代价,减少不可靠信息传播。所提方法在SceneFlow和KITTI 2015数据集进行了评估,将基准网络PSMNet的误差分别降低了35.2%、2.2%。实验证明,边缘信息的引入针对性地改善了现有算法在精细结构处(尤其边缘处)的视差求解,提高了整体预测精度。此外,所提的模块是轻量的,可适用于不同的立体匹配网络。  相似文献   

20.
综合理解视频内容和文本语义在很多领域都有着广泛的研究。早期的研究主要是将文本-视频映射到一个公共向量空间,然而这种方法所面临的一个问题是大规模文本-视频数据集不足。由于视频数据存在较大的信息冗余,直接通过3D网络提取整个视频特征会使网络参数较多且实时性较差,不利于执行视频任务。为了解决上述问题,文中通过良好的聚类网络聚合视频局部特征,并可以同时利用图像和视频数据训练网络模型,有效地解决了视频模态缺失问题,同时对比了人脸模态对召回任务的影响。在聚类网络中加入了注意力机制,使得网络更加关注与文本语义强相关的模态,从而提高了文本-视频的相似度值,更有利于提高模型的准确率。实验数据表明,基于聚类网络的文本-视频特征学习可以很好地将文本-视频映射到一个公共向量空间,使具有相近语义的文本和视频距离较近,而不相近的文本和视频距离较远。在MPII和MSR-VTT数据集上,基于文本-视频召回任务来测评模型的性能,相比其他模型,所提模型在两个数据集上进行精度均有提升。实验数据表明,基于聚类网络的文本-特征学习可以很好地将文本-视频映射到一个公共向量空间,从而用于文本-视频召回任务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号