首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
针对当前智能移动机器人在跟踪过程中常因目标发生外观形态上的变化而丢失跟踪目标的问题,利用Caffe深度学习框架和ROS机器人操作系统作为开发平台,设计一个高准确度及高实时性的移动机器人目标跟踪系统并进行了研究.使用对于目标形变、视角、轻微遮挡及光照变化具有鲁棒性的基于孪生卷积神经网络的GOTURN目标跟踪算法,通过ROS系统为桥梁使离线训练的跟踪模型实时应用于TurtleBot移动机器人上,并开展了详细的测试.实验结果表明,该目标跟踪系统不仅设计方案可行,实现了移动机器人在各种复杂场景下有效地跟踪目标,还具有成本低、性能高和易扩展等特点.  相似文献   

2.
针对海上复杂环境下深度学习方法跟踪速度慢和尺度变化问题,以及现有跟踪算法仅使用单层深度特征或手动融合多层特征的问题,提出一种基于卷积神经网络特征深度融合的多尺度相关滤波海上目标跟踪算法。以VGG-NET-16深度模型为基础,加入多层特征融合结构,实现深度卷积融合网络,用于特征提取,通过相关滤波算法构建定位滤波器,确定目标的中心位置,通过多尺度采样构建尺度滤波器,实现对目标的判断。实验结果表明,该算法可对海上移动目标实现多尺度的有效跟踪。  相似文献   

3.
杨帅东  谌海云  许瑾  汪敏 《控制与决策》2023,38(9):2496-2504
由于无人机视觉跟踪视角范围广且环境复杂,常遇到无人机飞行震动、目标遮挡、相似目标等问题,导致无人机跟踪目标发生漂移.因此,对具有回归计算的全卷积孪生网络跟踪算法(SiamRPN)进行改进,提出一种加强深度特征相关性的无人机视觉跟踪算法(SiamDFT).首先,将全卷积神经网络后三层卷积的网络宽度提升一倍,充分利用目标的外观信息,完成对模板帧和检测帧的特征提取;其次,在检测帧和模板帧分别提出注意力信息融合模块和特征深度卷积模块,两个深度的特征相关性计算方法能够有效抑制背景信息,增强像素对之间的关联性,高效完成分类和回归任务;然后,采用深度互相关运算完成相似性计算,并引入距离交并比的计算方法完成对目标的定位.实验结果表明, SiamDFT在无人机短时跟踪场景下精确率和成功率分别达到79.8%和58.3%,在无人机长时跟踪场景下精确率和成功率分别达到73.4%和55.2%,实景测试结果充分验证了所提出算法的有效性.  相似文献   

4.
在目标跟踪算法中深度网络可以对大量图像进行训练和表示,但是对于特定的跟踪对象,离线训练不仅费时,而且在对大量图像进行学习时,其表示和识别能力效果不佳。基于以上问题提出有模板更新的卷积网络跟踪算法,可以在没有离线训练的大量数据时,也能够利用实现强大的目标跟踪能力。在目标跟踪中,从目标周围区域提取一组归一化的局部小区域块作为新的滤波器,围绕目标定义下一帧中的一组特征映射来提取自适应滤波器周围目标,对随后帧提取的归一化样本进行卷积操作生成一组特征图;利用这些特征图获取每个滤波器和目标的局部强度衍射图样之间的相似性,然后对其局部结构信息进行编码;最后,使用来自全局表示的特征图保存该目标的内部几何设计,再通过软收缩方法去噪抑制噪声值,使其低于自适应阈值,生成目标的稀疏表示。有模板更新改进的CNT算法能稳定地跟踪目标,不会发生严重漂移,具有优于传统CNT的良好跟踪效果。  相似文献   

5.
目的 针对现实场景中跟踪目标的快速运动、旋转、尺度变化、遮挡等问题,提出了基于卷积特征的核相关自适应目标跟踪的方法。方法 利用卷积神经网络提取高、低层卷积特征并结合本文提出的核相关滤波算法计算并获得高底两层卷积特征响应图。采用Coarse-to-Fine方法对目标位置进行估计,在学习得到1维尺度核相关滤波器估计尺度的基础上实时更新高低两层核相关滤波器参数,以实现自适应的目标跟踪。结果 实验选取公开数据集中的典型视频序列进行跟踪,测试了算法在目标尺度发生变化、遮挡、旋转等复杂场景下的跟踪性能并与多种优秀的跟踪算法在平均中心误差、平均重叠率等指标上进行了定量比较,在Singer1、Car4、Jogging、Girl、Football以及MotorRolling视频图像序列上的中心误差分别为8.71、6.83、3.96、3.91、4.83、9.23,跟踪重叠率分别为0.969、1.00、0.967、0.994、0.967、0.512。实验结果表明,本文算法与原始核相关滤波算法相比,平均中心位置误差降低20%,平均重叠率提高12%。结论 采用卷积神经网络提取高低两层卷积特征,高层卷积特征用于判别目标和背景,低层卷积特征用于预测目标位置并通过Coarse-to-Fine方法对目标位置进行精确的定位,较好地解决了由于目标的旋转和尺度变化带来的跟踪误差大的问题,提高了跟踪性能并能够实时更新学习。在目标尺度发生变化、遮挡、光照条件改变、目标快速运动等复杂场景下仍表现出较强的鲁棒性和适应性。  相似文献   

6.
针对目标跟踪中因背景混叠和遮挡等因素导致的目标丢失问题,提出了一种基于背景约束与卷积特征的目标跟踪方法(TBCCF)。对输入图像进行多特征融合并降维,增强目标特征判别性能的同时降低特征计算的复杂度;在滤波器训练过程中引入背景约束,使得滤波器更专注于目标响应,以提升抗干扰能力;通过设置记忆滤波器与峰值旁瓣比检测,判断目标是否丢失。若丢失,引入卷积特征滤波器进行重检测,实现目标的重捕获。在Visual Tracking Benchmark数据集50个复杂场景视频序列上的实验结果表明,所提算法总体精度和总体成功率优于现有的多数跟踪算法。  相似文献   

7.
针对目标跟踪过程中目标受到光照变化、遮挡等因素的影响而导致目标丢失的现象,提出基于卷积网络特征的逆向稀疏建模的目标跟踪算法。将共享权重的卷积神经网络与目标跟踪相结合,利用卷积网络提取出更抽象、更具表达能力的特征,对目标进行重建,改善目标表示的抗变性。为了减少计算量,在粒子滤波跟踪框架下,加入逆向稀疏思想,即只需要对一个正目标模板进行稀疏求解。在模板更新阶段,选择重建残差满足一定阈值的对应特征进行替换。在实验过程中,分别与基于haar、直方图、梯度等传统特征的跟踪算法进行分析对比,结果表明该方法在光照、遮挡、形变方面有较好的性能。  相似文献   

8.
近年来,虽然基于卷积神经网络特征的目标跟踪方法取得了巨大进展,但也存在卷积特征维度高而导致的特征冗余和噪声等问题,以及不同层的卷积特征在表达目标表观特征方面的能力不同问题.为了克服上述问题,提出利用卷积特征图之间的距离自适应地选取卷积特征中心来进行目标跟踪的方法.首先通过特征图之间的距离矩阵和信息传播理论迭代产生特征中心,压缩特征维度,降低跟踪模型训练的计算量;其次综合利用多层卷积特征训练多个跟踪器联合确定目标状态,并根据跟踪器的实时误差在线更新跟踪器的权重,滤除卷积特征之间的信息冗余和噪声,提升卷积特征的鲁棒性和目标判别能力.实验结果表明,该方法在跟踪成功率和准确率方面都达到了领先水平,且在保证算法跟踪性能的同时有效地降低了卷积特征维度.  相似文献   

9.
深度学习在机器学习领域扮演着十分重要的角色,已被广泛应用于各种领域,具有十分巨大的研究和应用前景.然而,深度学习也面临3方面的挑战:1)现有深度学习工具使用便捷性不高,尽管深度学习领域工具越来越多,然而大多使用过程过于繁杂,不便使用;2)深度学习模型灵活性不高,限制了深度学习模型发展的多样性;3)深度学习训练时间较长,超参数搜索空间大,从而导致超参数寻优比较困难.针对这些挑战,设计了一种基于深度学习的并行编程框架,该框架设计了统一的模块库,能可视化地进行深度学习模型构建,提高了编程便捷性;同时在异构平台对算法模块进行加速优化,较大程度减少训练时间,进而提高超参数寻优效率.实验结果表明,该编程框架可以灵活构建多种模型,并且对多种应用取得了较高的分类精度.通过超参数寻优实验,可以便捷地获得最优超参数组合,从而推断各种超参数与不同应用的联系.  相似文献   

10.
基于深度学习的目标跟踪中,针对当目标发生快速移动、摄像机偏移、目标丢失时会严重影响跟踪器的精度、稳定性和成功率的问题,提出定向扰动算法.利用卷积神经网络可以定位的特点.改变粒子滤波器的扰动中心;定向扰动采样;使得候选样本更加接近真实位置,加速目标找回,防止目标丢失,进而提升跟踪器的精度和成功率.在决策阶段,先得到定位热点图;再提取前后帧目标HOG特征;最后计算相似度找到最优解.在加入HOG特征后,跟踪器可以适应更多的复杂场景,提升了跟踪器的鲁棒性.在obt-13基准数据库上,与FCNT,MEEM等算法进行实验的结果表明,在资源占用量很小的情况下,文中算法能有效地提升跟踪的精度、成功率以及鲁棒性,可以更好地应用于实际场景,并可扩展到其他跟踪器中.  相似文献   

11.
近年来,深度卷积神经网络在图像识别和语音识别等领域被广泛运用,取得了很好的效果。深度卷积神经网络是层数较多的卷积神经网络,有数千万参数需要学习,计算开销大,导致训练非常耗时。针对这种情况,本文提出深度卷积神经网络的多GPU并行框架,设计并实现模型并行引擎,依托多GPU的强大协同并行计算能力,结合深度卷积神经网络在训练中的并行特点,实现快速高效的深度卷积神经网络训练。   相似文献   

12.
视觉追踪是在计算机视觉的一个重要区域。怎么处理照明和吸藏问题是一个挑战性的问题。这份报纸论述一篇小说和有效追踪算法处理如此的问题。一方面,一起始的外观总是有的目标清除轮廓,它对照明变化光不变、柔韧。在另一方面,特征在追踪起一个重要作用,在哪个之中 convolutional 特征显示出有利性能。因此,我们采用卷的轮廓特征代表目标外观。一般来说,一阶的衍生物边坡度操作员在由卷检测轮廓是有效的他们与图象。特别, Prewitt 操作员对水平、垂直的边更敏感,当 Sobel 操作员对斜边更敏感时。内在地, Prewitt 和 Sobel 与对方一起是补足的。技术上说,这份报纸设计二组 Prewitt 和 Sobel 边察觉者提取一套完全的 convolutional 特征,它包括水平、垂直、斜的边特征。在第一个框架,轮廓特征从目标被提取构造起始的外观模型。在有这些轮廓特征的试验性的图象的分析以后,明亮的部分经常提供更有用的信息描述目标特征,这能被发现。因此,我们建议一个方法比较候选人样品和我们仅仅使用明亮的象素的训练模型的类似,它使我们的追踪者有能力处理部分吸藏问题。在得到新目标以后,变化以便改编外观,我们建议相应联机策略逐渐地更新我们的模型。convolutional 特征由井综合的 Prewitt 和 Sobel 边察觉者提取了的实验表演能是足够有效的学习柔韧的外观模型。九个挑战性的序列上的众多的试验性的结果证明我们的建议途径与最先进的追踪者比较很有效、柔韧。  相似文献   

13.
在R-CNN框架提出后,基于深度学习的目标检测框架逐渐成为主流,可分为基于候选窗口和基于回归两类。近两年来,在Faster R-CNN、YOLO、SSD等经典的基于深度学习目标检测框架的基础上,出现了大量的优秀框架。根据优化方法对近几年提出的框架进行了梳理和总结。在PASCAL_VOC和MS COCO等主流测试集上对目标检测方法的性能及优缺点进行了对比分析。讨论了目标检测领域当前面临的困难与挑战,对可能的发展方向进行了展望。  相似文献   

14.
近年来深度学习迅猛发展,颠覆了语音识别、图像分类、文本理解等领域的算法设计思路。深度学习因其具备强大的特征提取能力,在图像识别领域的成绩尤为突出。然而深度学习与视频监控领域的结合并不多,由于深度模型具有多层网络结构,算法复杂度大,训练和更新模型时比较耗时,很难满足实时性要求。回顾了深度学习的发展史,介绍了最近10年来国内外深度学习主要模型,论述了基于深度学习的目标跟踪算法,指出了各算法的优缺点,最后对当前该领域存在的问题和发展前景进行了总结和展望。  相似文献   

15.
黎云汉  楼京京 《控制工程》2011,18(6):966-969
针对光照条件突然变化情况下混合目标模型Mean Shift算法无法准确跟踪目标的缺点,提出了一种基于SIFT特征一致性的目标跟踪算法.算法用SIFT特征来匹配帧间的感兴趣区域,同时使用包含初始帧信息和前一帧信息的混合目标模型Mean Shift算法计算帧间感兴趣区域的直方图,以直方图分布距离最小为原则计算Mean Sh...  相似文献   

16.
在光照和目标形变等外部条件变化的情况下,仅利用目标的单一特征难以鲁棒的跟踪目标。提出了一种基于粒子滤波后验概率分布的多特征融合跟踪算法,在粒子滤波跟踪框架下,用直方图模型表征目标的颜色和边缘特征,通过两种特征后验概率之间的"协作"与"学习"实现特征融合,各种场景的试验结果比较表明,新的融合跟踪算法比仅用单一特征跟踪、现有的多特征融合算法具有更好的稳定性和鲁棒性,特别是针对环境光照和目标背景变化较大的情况更具有优势。  相似文献   

17.
深度卷积神经网络的目标检测算法综述   总被引:1,自引:0,他引:1       下载免费PDF全文
目标检测是计算机视觉中的核心任务之一,在智能视频监控、自动化监测、工业检测等领域应用广泛。近些年来,随着深度学习的快速发展,基于深度卷积神经网络的目标检测算法逐渐替代了传统的目标检测算法,成为了该领域的主流算法。介绍了目标检测算法的常用数据集和性能评价指标,介绍了卷积神经网络的发展,重点分析比较了两阶段目标检测算法和单阶段目标检测算法,展望了基于深度卷积神经网络的目标检测算法未来的发展。  相似文献   

18.
针对工业技术的发展对于多关节机械臂的精度与快速控制高要求,提出了一种机械臂卷积神经网络滑模轨迹跟踪控制方法。分析机械臂动力学方程,提取其中的不确定部分,针对不确定部分,构建深度卷积神经网络对其进行补偿,将补偿部分引入到滑模控制律中,通过改进后的滑模控制实现对机械臂轨迹跟踪的精确控制,并通过构建Lyapunov函数论证了系统的稳定性。仿真结果显示该方法能够满足轨迹跟踪要求,且减小了抖振现象。通过与其余三种典型控制方法的对比,测试结果表明,该方法加快了轨迹跟踪误差的收敛,且跟踪精度有了明显的提高。  相似文献   

19.
针对航拍视频的特性,对经典的压缩跟踪(Compression tracking,CT)算法进行了研究,发现了CT算法在样本采集和分类取样步骤中的不足并进行了相应的改进。采用Kalman滤波器预测目标的运动路径,并将预测结果应用于样本采集,自适应地修改搜索范围。更新了分类器的取样反馈过程,先对分类结果进行判断,评分绝对值低于某一阈值的分类结果不反馈给分类器,有效地保持了分类器的正确性。在改进算法的基础上,开发了基于航拍视频的目标跟踪系统。通过与经典压缩跟踪算法在实际航拍道路视频的测试和对比,验证了本文算法的有效性和实时性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号