首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
求解全源最短路径的Floyd算法是许多实际应用基础上的关键构建块,由于其时间复杂度较高,串行Floyd算法不适用于大规模输入图计算,针对不同平台的并行Floyd算法设计可为解决现实问题提供有效帮助。针对Floyd算法与国产自主研发处理器匹配滞后的问题,首次提出基于神威平台的Floyd并行算法的实现和优化。根据SW26010处理器主-从核架构的特点,采用主从加速编程模型进行并行实现,并分析了影响该算法性能的关键因素,通过算法优化、数组划分和双缓冲技术进行优化,逐步提升算法性能。测试结果表明,与主核上串行算法相比,基于神威平台的Floyd并行算法在单个SW26010处理器上可以获得106倍的最高加速。  相似文献   

2.
BLAS (basic linear algebra subprograms)是最基本、最重要的底层数学库之一.在一个标准的BLAS库中,BLAS 3级函数涵盖的矩阵-矩阵运算尤为重要,在许多大规模科学与工程计算应用中被广泛调用.另外, BLAS 3级属于计算密集型函数,对充分发挥处理器的计算性能有至关重要的作用.针对国产SW26010-Pro处理器研究BLAS 3级函数的众核并行优化技术.具体而言,根据SW26010-Pro的存储层次结构,设计多级分块算法,挖掘矩阵运算的并行性.在此基础上,基于远程内存访问(remote memory access, RMA)机制设计数据共享策略,提高从核间的数据传输效率.进一步地,采用三缓冲、参数调优等方法对算法进行全面优化,隐藏直接内存访问(direct memory access, DMA)访存开销和RMA通信开销.此外,利用SW26010-Pro的两条硬件流水线和若干向量化计算/访存指令,还对BLAS 3级函数的矩阵-矩阵乘法、矩阵方程组求解、矩阵转置操作等若干运算进行手工汇编优化,提高了函数的浮点计算效率.实验结果显示,所提出的并行优化技术...  相似文献   

3.
为发挥众核处理器性能优势及求解更大规模问题,针对大整数乘法在众核处理器上的并行化进行研究。在对笔算乘法和Comba乘法并行性进行分析的基础上,针对Comba乘法并行化时面临的负载均衡问题提出了多种解决方法;然后针对SW26010的结构特征,选择借鉴笔算乘法改进的Comba乘法,并且实现过程使用了向量化、寄存器通信等优化方法。测试结果说明改进后的并行Comba算法具有较好的并行性,能够很好地利用SW26010众核处理器的性能优势。  相似文献   

4.
矩阵乘作为许多科学应用中被频繁使用的关键部分,其计算量巨大且稠密的本质,使得高性能计算领域中矩阵乘并行算法的研究一直是经久不衰的热门话题.随着我国自主研发的申威众核处理器SW26010在科学计算和人工智能领域的快速发展,对面向SW26010众核处理器的高性能矩阵乘算法提出了迫切的需求.针对SW26010众核处理器的体系结构特征,首次对单精度矩阵乘实现进行了深入探讨,提出了3种不同存储层次的高性能并行算法.在进行算法设计时,计算方面,结合该处理器的从核双流水,从汇编层面手动控制核心计算任务的指令序列,保证了高效的指令级并行;访存方面,综合考虑了有限片上存储资源的有效使用,以及访存任务和计算任务的交叉并行,实现了计算访存的平衡以及算法整体性能的提升.实验结果显示,与该处理器上最先进的官方数学库xMath中的单精度矩阵乘实现相比,运行时峰值性能提升了6.8%,达到了理论峰值性能的86.17%;在基于不同矩阵乘场景的通用性比较中,95.33%的场景中性能更高,最高性能加速比达到247.9%,平均性能加速比为61.66%.  相似文献   

5.
快速多极子方法(FMM)是一种求解N体问题的快速高效数值算法,在宇宙学和分子动力学等模拟中具有广泛的应用。申威SW26010是一款国产众核异构处理器,含260核心(4核组)。基于申威SW26010的众核架构设计和实现了快速多极子方法,并对核心函数(尤其是最耗时的粒子对相互作用)系统地进行了性能优化,包括异步DMA、SIMD向量化、循环展开、内联汇编指令调整等。以粒子对相互作用为例,优化后代码的计算速度约为主核上运行的原始代码的400倍,每个核组上的浮点性能达到250 GFLOPS,即理论峰值性能的32.5%。  相似文献   

6.
针对CESM中的有限差分算法并行过程中存在内存读取冗余过大、通信开销过高的问题,设计出根据数据结构进行数据重构、计算核心捆绑、流水线通信等多种并行优化方案。弥补了申威26010处理器在数据读取过程中缺少共享缓存区、带宽利用率不高等不足,缓解了申威26010处理器在有限差分法求解过程的通信瓶颈。对CESM中以有限差分法为核心计算的两个函数,在申威26010众核处理器上的测试结果表明,提出算法及优化策略拥有21.2倍的性能提升。  相似文献   

7.
倪鸿  刘鑫 《计算机工程》2019,45(6):45-51
为解决高性能计算中的非结构网格离散访存问题,以神威·太湖之光国产超级计算机为平台,根据异构众核处理器SW26010的体系结构特点,提出一种基于排序思想的通用众核优化算法,以减少非结构网格计算中的随机访存。基于网格划分原理,在O(n)时间内对生成的稀疏矩阵非零元素进行并行重排序。采用一种内部映射方式对计算向量实现扩展或变换,将细粒度访存转化为无写冲突的粗粒度访存。对多个实际应用算例的通量计算进行众核优化,结果表明,相比主核上的串行算法,该算法能够获得平均10倍以上的加速效果。  相似文献   

8.
神威太湖之光是最新一期Top500榜单上排名第一的超级计算机,峰值性能为125.4 PFlops,其计算能力主要归功于国产SW26010众核处理器。OpenFOAM(Open Source Field Operation and Manipulation)是计算流体力学领域使用最广泛的开源软件包,但是由于其基于C++实现,与神威太湖之光上的异构众核处理器SW26010的编译器不兼容,因此无法直接在该架构上有效运行。基于SW26010的主核/从核的体系架构移植了OpenFOAM的核心计算代码,并采用混合语言编程实现的方式来解决编译不兼容的问题。此外,通过寄存器通信、向量化和双缓冲等优化手段,单核组的性能较优化后的主核代码提高了8.03倍,较Intel(R) Xeon(R) CPU E5-2695 v3的串行执行性能提高了1.18倍。同时,将单核组的实现扩展到了神威太湖之光的大规模集群上,并进行了强可扩展性测试,256个核组上实现了184.9倍的加速。采用的移植方式和优化手段也可以为其他复杂C++程序在神威太湖之光上的应用提供借鉴。  相似文献   

9.
王鑫  张铭 《计算机应用研究》2023,40(6):1745-1749
针对应用普通卷积结构的卷积计算复杂度较高、计算量与参数量较大的问题,提出以国产SW26010P众核处理器为平台的并行分组卷积算法。核心思想是利用独特的数据布局,通过多核映射处理进行并行计算。实验测试结果表明,与单核串行算法相比,使用该并行分组卷积算法可以获得79.5的最高加速比及186.7MFLOPS的最大有效算力。通过SIMD指令对并行分组卷积算法进行数据并行优化后,与使用优化前的并行分组卷积算法相比,可以获得10.2的最高加速比。  相似文献   

10.
当前的MD5解密算法无法适应申威架构,不能充分发挥申威26010众核处理器的性能优势。针对上述问题,采用散列初始化、循环展开、链接变量优化、61步优化和申请内存优化等优化方法在单核上进行优化,提高解密算法速度,并且将优化后的解密算法改写成主从模式,将计算任务分配到64个从核中并行执行,对主从核的访存方式进行优化,以减少访存对程序带来的时间开销。通过5组不同任务量的测试,实验结果显示在单核上优化后的平均加速比为12.28,在从核上优化后的平均加速比为44.84。实验结果表明在申威26010众核处理器上的MD5解密算法优化方法具有可行性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号