首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
张锦  屈佩琪  孙程  罗蒙 《计算机应用》2022,42(4):1292-1300
针对现有安全帽佩戴检测干扰性强、检测精度低等问题,提出一种基于改进YOLOv5的安全帽检测新算法。首先,针对安全帽尺寸不一的问题,使用K-Means++算法重新设计先验框尺寸并将其匹配到相应的特征层;其次,在特征提取网络中引入多光谱通道注意力模块,使网络能够自主学习每个通道的权重,增强特征间的信息传播,从而加强网络对前景和背景的辨别能力;最后,在训练迭代过程中随机输入不同尺寸的图像,以此增强算法的泛化能力。实验结果表明,在自制安全帽佩戴检测数据集上,所提算法的均值平均精度(mAP)达到96.0%,而对佩戴安全帽的工人的平均精度(AP)达到96.7%,对未佩戴安全帽的工人的AP达到95.2%,相较于YOLOv5算法,该算法对佩戴安全帽的平均检测准确率提升了3.4个百分点,满足施工场景下安全帽佩戴检测的准确率要求。  相似文献   

3.
4.
安全帽能够有效减轻事故损害,监督工人的安全帽佩戴显得十分必要.针对工人安全帽佩戴检测,文章提出一种基于深度学习的安全帽佩戴检测方法,用于施工现场摄像头监控的图像和视频目标检测.试验结果表明,该方法能够较好地实现安全帽佩戴的图像和视频检测.  相似文献   

5.
在煤矿生产中,工人由于未佩戴安全帽而受伤的事故时有发生。为了构建数字化安全帽监测系统,提出了一种基于卷积神经网络的安全帽佩戴检测模型。采用先进的Darknet53网络作为模型主干,用于提取图片的特征信息。此外,在模型中引入注意力机制用于丰富特征之间的信息传播,增强模型的泛化能力。最后,制作了安全帽佩戴预训练数据集和实际矿井场景数据集,并在PyTorch平台进行全面的对比实验验证了模型设计的有效性,模型在实际矿井场景数据集上获得92.5 mAP的优异性能。  相似文献   

6.
金雨芳  吴祥  董辉  俞立  张文安 《计算机科学》2021,48(11):268-275
安全生产管理是建筑、重工业等高危企业发展的重要方针,安全帽在施工生产环境中对人员头部防护起着关键作用,因此加强安全帽佩戴监管十分必要.近年来,基于图像视觉的安全帽佩戴监测方法成为了企业实施管理的主要手段,如何提高安全帽佩戴检测精度和检测速度是应用的关键难题.针对上述问题,文中提出了一种基于改进YOLO v4的安全帽佩戴检测算法.首先,在YOLO v4算法的3个特征图输出的基础上增加了 128×128特征图输出,从而将特征图输出的8倍下采样改为4倍下采样,为后续特征融合提供了更多小目标特征.其次,基于密集连接的思想对特征融合模块进行改进以实现特征重用,使得负责小目标检测的Yolo Head分类器可以结合不同层次特征层的特征,从而得到更好的目标检测分类结果.最后,对比实验的结果表明,所提方法的平均精度高达91.17%,相比原网络检测精度提高了 2.96%,检测速度基本不变,可达52.9 frame/s,从而在满足实时检测需求的同时可以得到更优的检测精度,有效实现了安全帽佩戴的高速高精度检测.  相似文献   

7.
张传深  徐升  胡佳  王强 《集成技术》2023,12(4):18-31
目前,安全帽检测系统主要使用固定摄像头,无法实现全区域检测,而基于深度学习的检测算法结构复杂、计算成本高,无法满足移动端和嵌入式设备的部署要求。针对上述问题,该文提出一种基于无人机的安全帽轻量型视觉检测算法。系统通过无人机平台搭载的相机对施工现场进行图像采集,并无线传输至后台计算机进行处理,检测算法基于 YOLOv5s 框架进行了轻量化改进。针对无人机采集影像中目标占比较小的问题,该文采用了多尺度检测、图像预处理、正负样本不均衡等方法,对 YOLOv5s 目标检测算法进行针对性改进。测试结果表明,与原模型相比,轻量型目标检测模型的平均精度均值仅下降了 1.72%,但在同一 CPU 上的推理速度提升了 1 倍,浮点计算量由原来的每秒 165 亿次压缩至每秒 34 亿次,模型大小约为原模型的 1/10。  相似文献   

8.
在深度学习的推动下,目标检测方法在工业安防领域取得了很大的进展,安全帽佩戴检测任务逐渐成为智能图像识别领域的一项重要研究课题。为了综合分析深度学习技术在安全帽佩戴检测任务中的研究现状,方便后续科研人员开展研究性工作。对近年来国内外学者在深度学习环境下的安全帽佩戴检测算法总结归纳,对比分析这些方法的优点和局限性。分别从数据集的建立和用途、安全帽佩戴检测主要检测算法归纳、当前安全帽佩戴检测领域的难点这三个方面进行分析。对安全帽佩戴检测领域未来的研究方向进行展望,并提出该领域今后研究重点。  相似文献   

9.
在生产和作业场地中,工人由于不佩戴安全帽而引发的安全事故时有发生。为了降低由于未佩戴安全帽而引发的安全事故发生率,提出了一种基于改进YOLO v3算法的安全帽佩戴检测方法。通过采用图像金字塔结构获取不同尺度的特征图,用于位置和类别预测;使用施工现场出入口监控视频作为数据集进行目标框维度聚类,确定目标框参数;在训练迭代过程中改变输入图像的尺寸,增加模型对尺度的适应性。理论分析和实验结果表明,在安全帽佩戴检测任务中,mAP(Mean Average Precision)达到了92.13%,检测速率提高到62 f/s,其检测准确率与检测速率相较于YOLO v3均略有提高,所提算法不仅满足安全帽佩戴检测中检测任务的实时性,同时具有较高的检测准确率。  相似文献   

10.
安全帽作为施工场所工人的安全保障,佩戴与否影响着工人的生命安全。在佩戴检测方面引入深度学习可以高效地提醒工人佩戴安全帽。但由于施工图像中安全帽的图像过小,CenterNet表现得并不好。因此针对这个情况,提出了FPN-CenterNet框架;使用ACNet非对称卷积核来对主干网络的特征提取进行增强;使用DIoU损失函数来优化边框预测的准确度。最终修改的算法相较于原始的CenterNet算法mAP提升了4.99个百分点,在GTX GeForce 1050的GPU上的FPS达到25.81。实验结果表明修改之后的算法在安全帽佩戴检测上有良好的准确性和效率。  相似文献   

11.
安全帽佩戴实时检测是智慧工地和智慧交通必不可少的一部分;基于深度学习的安全帽检测逐渐取代了传统的检测方法;在精度、性能和效率等方面取得了显著进展;在现实场景中有了广泛的应用。为了便于安全帽算法的研究;综合分析了各应用场景中安全帽目标检测算法的研究现状。总结了目标检测算法的发展历史;对近年来国内外学者的安全帽检测算法研究进行归纳;对比总结了不同算法不同优化的优缺点;着重分析了安全帽检测算法的轻量化方法;根据目前目标检测算法在实际应用场景中出现的不足;对安全帽检测的深度学习算法的未来研究方向进行了展望。  相似文献   

12.
刘泽西  张楠  连婷  马骏  赵勇  倪威 《测控技术》2022,41(8):16-21
变电站内电气设备数量众多,在工人进行现场作业时需要对工人佩戴安全帽进行监测。由于机器学习的安全帽佩戴检测方法常常出现漏检和误检的情况,为提高对安全帽佩戴识别的准确率,同时加快识别速度,提出了一种基于YOLOv5s的轻量化卷积神经网络模型。通过引入RepVGG模块对网络主干进行轻量化,在网络后处理阶段通过Soft-NMS降低遮挡目标漏检率,以Mixup数据增强来扩充数据集,建立样本之间的线性关系,提升训练模型泛化性能,最后进行消融实验。实验结果表明,改进的模型的均值平均精度(mAP)达到80.4%,推理速度达到了83.3 f/s,为变电站安全帽佩戴检测提供了有效参考。  相似文献   

13.
庞殊杨 《计算机应用研究》2021,38(6):1907-1912,1916
针对现有安全帽检测方法对多重叠目标和小目标漏检率较高的问题,提出了一种基于改进MTCNN(multi-task cascaded convolutional neural network)的多尺度安全帽识别方法.首先,删除MTCNN中针对人脸识别的landmark部分以简化网络结构;其次,用普通卷积层替换最大池化层以构成全卷积网络,提升网络检测精度;然后引入MobileNet轻量化网络结构减少计算量;最后,适当调整网络卷积核个数和全连接层神经元个数使模型更适用于不同尺寸的安全帽识别.实验结果表明,与原MTCNN相比,该算法的精确度和召回率分别提高了3.22%和6.73%,就小尺寸安全帽识别而言,F1值提高了8.13%;在无GPU环境下的平均检测速度为29.62 fps,兼顾了多尺度安全帽识别的准确率与实时性.  相似文献   

14.
输电铁塔作为架空输电线的重要组成部分,其安全状况将影响整个电力系统的运行,鸟窝的搭建作为影响输电线路正常运行的重要因素之一,需要对此进行监控.而现有的监控手段不仅效率低,还需要耗费大量的人力物力.本文针对这一现象提出一种基于SSD算法的实时检测方法,并在SSD的网络结构基础上将前置网络VGGNet替换为ResNet-1...  相似文献   

15.
安全帽是施工现场最常见和实用的个人防护工具,能够有效防止和减轻意外带来的头部伤害。安全帽检测是施工现场人员安全管理的主要工作,也是施工现场智能化监控技术的重要内容,随着深度学习的发展,现已成为智慧工地建设的重要部分。为了综合分析深度学习在安全帽检测中的研究现状,针对安全帽检测算法研究,归纳了常用的安全帽检测算法和基于深度学习的安全帽检测算法,具体说明了其优缺点。在此基础上,针对现有问题,系统地总结分析了安全帽检测算法的相关改进方法,并梳理了各类方法的特点、优势和局限性。最后展望了基于深度学习的安全帽检测算法的未来发展方向。  相似文献   

16.
施工人员佩戴安全帽是安全生产的重要一环,为保障工人生命安全,同时克服传统人工巡检费时费力的缺点,提出了一种基于Single Shot MultiBox Detector(SSD)改进的安全帽检测新方法.针对安全帽数据集内目标尺度偏小,尺度分布不均衡,对SSD模型结构进行改进,添加用以特征融合的分支网络,增强浅层特征图语...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号