共查询到19条相似文献,搜索用时 46 毫秒
1.
随着网络上图像和视频数据的快速增长,传统图像检索方法已难以高效处理海量数据。在面向大规模图像检索时,特征哈希与深度学习结合的深度哈希技术已成为发展趋势,为全面认识和理解深度哈希图像检索方法,本文对其进行梳理和综述。根据是否使用标签信息将深度哈希方法分为无监督、半监督和监督深度哈希方法,根据无监督和半监督深度哈希方法的主要研究点进一步分为基于卷积神经网络(convolutional neural networks,CNN)和基于生成对抗网络(generative adversarial networks,GAN)的无监督/半监督深度哈希方法,根据数据标签信息差异将监督深度哈希方法进一步分为基于三元组和基于成对监督信息的深度哈希方法,根据各种方法使用损失函数的不同对每类方法中一些经典方法的原理及特性进行介绍,对各种方法的优缺点进行分析。通过分析和比较各种深度哈希方法在CIFAR-10和NUS-WIDE数据集上的检索性能,以及深度哈希算法在西安邮电大学图像与信息处理研究所(Center for Image and Information Processing,CⅡP)自建的两个特色数据库上的测试结果,对基于深度哈希的检索技术进行总结,分析了深度哈希的检索技术未来的发展前景。监督深度哈希的图像检索方法虽然取得了较高的检索精度。但由于监督深度哈希方法高度依赖数据标签,无监督深度哈希技术更加受到关注。基于深度哈希技术进行图像检索是实现大规模图像数据高效检索的有效方法,但存在亟待攻克的技术难点。针对实际应用需求,关于无监督深度哈希算法的研究仍需要更多关注。 相似文献
2.
现有基于深度学习的哈希图像检索方法通常使用全连接作为哈希编码层,并行输出每一位哈希编码,这种方法将哈希编码都视为图像的信息编码,忽略了编码过程中哈希码各个比特位之间的关联性与整段编码的冗余性,导致网络编码性能受限.因此,本文基于编码校验的原理,提出了串行哈希编码的深度哈希方法——串行哈希编码网络(serial hashing network, SHNet).与传统的哈希编码方法不同, SHNet将哈希编码网络层结构设计为串行方式,在生成哈希码过程中对串行生成的前部分哈希编码进行校验,从而充分利用编码的关联性与冗余性生成信息量更为丰富、更加紧凑、判别力更强的哈希码.采用mAP作为检索性能评价标准,将本文所提方法与目前主流哈希方法进行比较,实验结果表明本文在不同哈希编码长度下的m AP值在3个数据集CIFAR-10、Image Net、NUS-WIDE上都优于目前主流深度哈希算法,证明了其有效性. 相似文献
4.
目的 基于深度学习的图像哈希检索是图像检索领域的热点研究问题。现有的深度哈希方法忽略了深度图像特征在深度哈希函数训练中的指导作用,并且由于采用松弛优化,不能有效处理二进制量化误差较大导致的生成次优哈希码的问题。对此,提出一种自监督的深度离散哈希方法(self-supervised deep discrete hashing,SSDDH)。 方法 利用卷积神经网络提取的深度特征矩阵和图像标签矩阵,计算得到二进制哈希码并作为自监督信息指导深度哈希函数的训练。构造成对损失函数,同时保持连续哈希码之间相似性以及连续哈希码与二进制哈希码之间的相似性,并利用离散优化算法求解得到哈希码,有效降低二进制量化误差。 结果 将本文方法在3个公共数据集上进行测试,并与其他哈希算法进行实验对比。在CIFAR-10、NUS-WIDE(web image dataset from National University of Singapore)和Flickr数据集上,本文方法的检索精度均为最高,本文方法的准确率比次优算法DPSH(deep pairwise-supervised hashing)分别高3%、3%和1%。 结论 本文提出的基于自监督的深度离散哈希的图像检索方法能有效利用深度特征信息和图像标签信息,并指导深度哈希函数的训练,且能有效减少二进制量化误差。实验结果表明,SSDDH在平均准确率上优于其他同类算法,可以有效完成图像检索任务。 相似文献
5.
深度哈希在图像搜索领域取得了很好的应用,然而,先前的深度哈希方法存在语义信息未被充分利用的局限性。开发了一个基于深度监督的离散哈希算法,假设学习的二进制代码应该是分类的理想选择,成对标签信息和分类信息在一个框架内用于学习哈希码,将最后一层的输出直接限制为二进制代码。由于哈希码的离散性质,使用交替最小化方法来优化目标函数。该算法在三个图像检索数据库CIFAR-10、NUS-WIDE和SUN397中进行验证,其准确率优于其他监督哈希方法。 相似文献
6.
针对传统无监督哈希图像检索模型中存在图像数据之间的语义信息学习不足,以及哈希编码长度每换一次模型就需重新训练的问题,提出一种用于大规模图像数据集检索的无监督搜索框架——基于相关度距离的无监督并行哈希图像检索模型.首先,使用卷积神经网络(CNN)学习图像的高维特征连续变量;然后,使用相关度距离衡量特征变量构建伪标签矩阵,... 相似文献
7.
为了解决传统图像检索算法低效和耗时的缺点,提出一种基于PCA哈希的图像检索算法。具体地,首先通过结合PCA与流形学习将原始高维数据降维,然后通过最小方差旋转得到哈希函数和二值化阈值。进而将原始数据矩阵转换为哈希编码矩阵。最后通过计算样本间汉明距离得到样本相似性。在三个公开数据集上的实验结果表明本文提出的哈希算法在多个评价指标下均优于现有算法。 相似文献
8.
针对现有的哈希图像检索方法表达能力较弱、训练速度慢、检索精度低,难以适应大规模图像检索的问题,提出了一种基于深度残差网络的迭代量化哈希图像检索方法(DRITQH)。首先,使用深度残差网络对图像数据进行多次非线性变换,从而提取图像数据的特征,并获得具有语义特征的高维特征向量;然后,使用主成分分析(PCA)对高维图像特征进行降维,同时运用迭代量化对生成的特征向量进行二值化处理,更新旋转矩阵,将数据映射到零中心二进制超立方体,从而最小化量化误差并得到最佳的投影矩阵;最后,进行哈希学习,以得到最优的二进制哈希码在汉明空间中进行图像检索。实验结果表明,DRITQH在NUS-WIDE数据集上,对4种哈希码的检索精度分别为0.789、0.831、0.838和0.846,与改进深度哈希网络(IDHN)相比分别提升了0.5、3.8、3.7和4.2个百分点,平均编码时间小了1 717 μs。DRITQH在大规模图像检索时减少了量化误差带来的影响,提高了训练速度,实现了更高的检索性能。 相似文献
9.
针对迭代量化哈希算法未考虑高维图像描述符中呈现出的自然矩阵结构,当视觉描述符由高维特征向量表示并且分配长二进制码时,投影矩阵需要昂贵的空间和时间复杂度的问题,提出一种基于双线性迭代量化的哈希图像检索方法。该方法使用紧凑的双线性投影而不是单个大型投影矩阵将高维数据映射到两个较小的投影矩阵中;然后使用迭代量化的方法最小化量化误差并生成有效的哈希码。在CIFAR-10和Caltech256两个数据集上进行实验,实现了与最先进的8种哈希方法相媲美的性能,同时具有更快的线性扫描时间和更小的内存占用量。结果表明,该方法可以减轻数据的高维性带来的影响,从而提高ITQ的性能,可广泛服务于高维数据长编码位的哈希图像检索应用。 相似文献
10.
近年来,深度有监督哈希检索方法已成功应用于众多图像检索系统中。但现有方法仍然存在一些不足:一是大部分深度哈希学习方法都采用对称策略来训练网络,但该策略训练通常比较耗时,难以用于大规模哈希学习过程;二是哈希学习过程中存在离散优化问题,现有方法将该问题进行松弛,但难以保证得到最优解。为解决上述问题,提出了一种贪心非对称深度有监督哈希图像检索方法,该方法将贪心算法和非对称策略的优势充分结合,进一步提高了哈希检索性能。在两个常用数据集上与17种先进方法进行比较。在CIFAR-10数据集上48 bit条件下,与性能最好的方法相比mAP提高1.3%;在NUS-WIDE数据集上所有bit下,mAP平均提高2.3%。在两个数据集上的实验结果表明,该方法可以进一步提高哈希检索性能。 相似文献
11.
随着移动互联网技术的发展,图像数据的规模越来越大,大规模图像检索任务已经成为了一个紧要的问题。由于检索速度快和存储消耗低,哈希算法受到了研究者的广泛关注。基于深度学习的哈希算法要达到较好的检索性能,需要一定数量的高质量训练数据来训练模型。然而现存的哈希方法通常忽视了数据集存在数据类别非平衡的问题,而这可能会降低检索性能。针对上述问题,提出了一种基于元学习网络的深度哈希检索算法。所提算法可以直接从数据中自动学习加权函数。该加权函数是只有一个隐含层的多层感知机(MLP),在少量无偏差元数据的指导下,加权函数的参数可以和模型训练过程中的参数同时进行优化更新。元学习网络参数的更新方程可以解释为:较符合元学习数据的样本权重将被提高,而不符合元学习数据的样本权重将被减小。基于元学习网络的深度哈希检索算法可以有效减少非平衡数据对图像检索的影响,并可以提高模型的鲁棒性。在CIFAR-10等广泛使用的基准数据集上进行的大量实验表明,在非平衡比率较大时,所提算法的平均准确率均值(mAP)最佳;在非平均比率为200的条件下,所提算法的mAP比中心相似度量化算法、非对称深度监督哈希(ADSH)算法和快速可扩展监督哈希(FSSH)算法分别提高0.54个百分点,30.93个百分点和48.43个百分点。 相似文献
12.
Multimedia Tools and Applications - Currently, due to the exponential growth of online images, it is necessary to consider image retrieval among large number of images, which is very time-consuming... 相似文献
13.
Multimedia Tools and Applications - Hashing has drawn more and more attention in image retrieval due to its high search speed and low storage cost. Traditional hashing methods project the... 相似文献
14.
Multimedia Tools and Applications - Hashing approaches have got a great attention because of its efficient performance for large-scale images. This paper, aims to propose a deep hashing method... 相似文献
15.
针对传统方法在面对大量肺部数据时检索效率不高的问题,提出了一种基于有监督哈希的肺结节CT图像检索方法。首先,通过图像预处理建立肺结节图像库,并从灰度、形态、纹理方面提取图像多特征;然后,利用监督信息构造哈希函数,将多特征映射为低维哈希码;最后,根据设计的自适应权重计算图像相似度,并返回相似的肺结节图像。实验结果表明,本文方法能有效地实现肺结节CT图像的快速检索,对查询病灶的良恶性分类达到89.45%。 相似文献
16.
现实生活中的图像大多具有多种标签属性。对于多标签图像,理想情况下检索到的图像应该按照与查询图像相似程度降序排列,即与查询图像共享的标签数量依次递减。然而,大多数哈希算法主要针对单标签图像检索而设计的,而且现有用于多标签图像检索的深度监督哈希算法忽略了哈希码的排序性能且没有充分地利用标签类别信息。针对此问题,提出了一种具有性能感知排序的深度监督哈希方法(deep supervised hashing with performance-aware ranking,PRDH),它能够有效地感知和优化模型的性能,改善多标签图像检索的效果。在哈希学习部分,设计了一种排序优化损失函数,以改善哈希码的排序性能;同时,还加入了一种空间划分损失函数,将具有不同数量的共享标签的图像划分到相应的汉明空间中;为了充分地利用标签信息,还鲜明地提出将预测标签用于检索阶段的汉明距离计算,并设计了一种用于多标签分类的损失函数,以实现对汉明距离排序的监督与优化。在三个多标签基准数据集上进行的大量检索实验结果表明,PRDH的各项评估指标均优于现有先进的深度哈希方法。 相似文献
17.
当前主流的Web图像检索方法仅考虑了视觉特征,没有充分利用Web图像附带的文本信息,并忽略了相关文本中涉及的有价值的语义,从而导致其图像表达能力不强。针对这一问题,提出了一种新的无监督图像哈希方法——基于语义迁移的深度图像哈希(semantic transfer deep visual hashing,STDVH)。该方法首先利用谱聚类挖掘训练文本的语义信息;然后构建深度卷积神经网络将文本语义信息迁移到图像哈希码的学习中;最后在统一框架中训练得到图像的哈希码和哈希函数,在低维汉明空间中完成对大规模Web图像数据的有效检索。通过在Wiki和MIR Flickr这两个公开的Web图像集上进行实验,证明了该方法相比其他先进的哈希算法的优越性。 相似文献
18.
为了进一步降低无监督深度哈希检索任务中的伪标签噪声,提出了一种等量约束聚类的无监督蒸馏哈希图像检索方法。该方法主要分为两个阶段,在第一阶段中,主要对无标签图像进行软伪标签标注,用于第二阶段监督哈希特征学习,通过所提等量约束聚类算法,在软伪标签标注过程中可以有效降低伪标签中的噪声;在第二阶段中,主要对学生哈希网络进行训练,用于提取图像哈希特征。通过所提出的无监督蒸馏哈希方法,利用图像软伪标签指导哈希特征学习,进一步提高了哈希检索性能,实现了高效的无监督哈希图像检索。为了评估所提方法的有效性,在CIFAR-10、FLICKR25K和EuroSAT三个公开数据集上进行了实验,并与其他先进方法进行了比较。在CIFAR-10数据集上,与TBH方法相比,所提方法检索精度平均提高12.7%;在FLICKR25K数据集上,与DistillHash相比,所提方法检索精度平均提高1.0%;在EuroSAT数据集上,与ETE-GAN相比,所提方法检索精度平均提高16.9%。在三个公开数据集上进行的实验结果表明,所提方法能够实现高性能的无监督哈希检索,且对各类数据均有较好的适应性。 相似文献
19.
In this paper, we propose a novel hash code generation method based on convolutional neural network (CNN), called the piecewise supervised deep hashing (PSDH) method to directly use a latent layer data and the output layer result of the classification network to generate a two-segment hash code for every input image. The first part of the hash code is the class information hash code, and the second part is the feature message hash code. The method we proposed is a point-wise approach and it is easy to implement and works very well for image retrieval. In particular, it performs excellently in the search of pictures with similar features. The more similar the images are in terms of color and geometric information and so on, the better it will rank above the search results. Compared with the hashing method proposed so far, we keep the whole hashing code search method, and put forward a piecewise hashing code search method. Experiments on three public datasets demonstrate the superior performance of PSDH over several state-of-art methods. 相似文献
|