首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Movements of the head and eyes are known to be intimately related. Eye position has also been shown to be closely related to the electromyographic activity of dorsal neck muscles; however, extraocular muscle proprioception has not generally been considered to play a part in the control of such movements. We have previously shown that, in the pigeon, imposed movements of one eye modify the vestibular responses of several dorsal neck muscles in ways that are dependent on stimulus parameters such as the amplitude and velocity of imposed eye movement. The present study examines more closely the interactions between imposed eye movements and different muscle pairs. The three neck muscle pairs studied each responded to afferent signals from the extraocular muscles in discrete and specific ways which appeared to be correlated with their different actions. Complementary effects of imposed eye movements in the horizontal plane were seen for both the complexus and splenius muscle pairs, with imposed eye movements in one direction producing the largest inhibition of the ipsilateral muscle's vestibular response and imposed eye movements in the opposite direction the largest inhibition of the contralateral muscle's vestibular response. During roll tilt oscillation (ear-up/ear-down) in the frontal plane, similar complementary effects of imposed eye movement were seen in the complexus muscle pair, but the splenius muscle pair showed little tuning, with similar inhibition for imposed eye movement directed either upwards or downwards. In contrast to these complementary effects, the biventer cervicis muscle pair showed no vestibular modulation during vestibular stimulation in the horizontal plane and their spontaneous activity was not altered by imposed eye movement. During roll-tilt oscillation (ear-up/ear-down) in the frontal plane imposed eye movement directed vertically upwards increased both muscles' vestibular responses and imposed eye movement directed vertically downwards inhibited both muscles' vestibular responses. Section of the ophthalmic branch of the trigeminal nerve (deafferenting the eye muscles) abolished the effects of imposed eye movement on the neck muscle pairs. In conjunction with further control experiments these results provide compelling evidence that proprioceptive signals from the extraocular muscles reach the neck muscles and provide them with a functionally significant signal. We have previously shown that signals from the extraocular muscles appear to be involved in the control of the vestibulo-ocular reflex. It follows from the experiments reported here that proprioceptive signals from the extraocular muscles are also likely to be involved in the control of gaze.  相似文献   

2.
Videonystagmoscopy has been used to subjectively observe the responses of the vestibular system in a population of patients with vestibular deficits. These results were compared with those of a control group of healthy, age-matched volunteers. The videonystagmoscopy device is made of one or two CCD cameras mounted on lightproof goggles, allowing a subjective observation of ocular movements on a video monitor. The eye movements, as well as the position of the head in space, can be recorded on videotape. The eyes are illuminated by infrared light emitting diodes placed on each side of the camera lens. The subjects are seated on a manually driven Barany chair. Subjects went through a protocol of passive roll head tilt on each side, followed by a slow, whole body rotation of 180 degrees amplitude, clockwise and counterclockwise, and then a head shaking test (HST). The eyes were subjectively observed, and we focussed on: torsional eye movements during head tilt, nystagmus when the rotation had stopped, and nystagmus induced by HST. With this simple and noninvasive examining procedure, screening of vestibular function at the bedside or during E.N.T. clinical investigations is possible.  相似文献   

3.
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED)  相似文献   

4.
Human arm movements towards visual targets are remarkably reproducible in several tasks and conditions. Various authors have reported that trajectories of unconstrained point-to-point movements are slightly curved, smooth and have bell-shaped velocity profiles. The hand paths of such movements show small - but significant - curvatures throughout the workspace. The cause of these curvatures is still obscure. Traditionally this curvature is explained as the result of an optimisation process or is ascribed to mechanical or dynamic properties of the effector system. Recently, however, it has been suggested that these curvatures are due at least partly, to the visual misperception of straight lines. To evaluate the latter hypothesis, we compared unconstrained, self-paced point-to-point movements that subjects made with their right and left hand. We assume that the visual misperception may depend on the position in the workspace, subject, etc. but not on the hand used to make the movement. Therefore we argue that if curvature is caused by a visual misperception of straight lines, curvatures should be the same for movements made with the left and right hand. Our experiments cast strong doubt on the hypothesis that curvatures are the result of a visual distortion, because curvatures of the left hand trajectories, mirrored in the mid-sagittal plane, are found to be accurately described by trajectories of the right hand. Estimates of the effect of visual distortion on movement curvature show that, if present, this effect is very small compared with other sources that contribute to movement curvature. We found that curvatures depend strongly on the subject and on the direction and distance of the movement. Curvatures do not seem to be caused purely by the dynamic properties of the arm, since curvatures do not change significantly with increasing movement velocity. Therefore, we conclude that curvatures reflect an inherent property of the control of multi-joint arm movements.  相似文献   

5.
The fastigial nucleus (FN) receives vestibular information predominantly from Purkinje cells of the vermis. FN in the monkey can be divided in a rostral part, related to spinal mechanisms, and a caudal part with oculomotor functions. To understand the role of FN during movements in space, single-unit activity in alert monkeys was recorded during passive three-dimensional head movements from rostral FN. Seated monkeys were rotated sinusoidally around a horizontal earth-fixed axis (vertical stimulation) at different orientations 15 degrees apart (including roll, pitch, vertical canal plane and intermediate planes). In addition, sinusoidal rotations around an earth-vertical axis (yaw stimulus) included different roll and pitch positions (+/-10 degrees, +/-20 degrees). The latter positions were also used for static stimulation. One hundred fifty-eight neurons in two monkeys were modulated during the sinusoidal vertical search stimulation. The vast majority showed a uniform response pattern: a maximum at a specific head orientation (response vector orientation) and a null response 90 degrees apart. Detailed analysis was obtained from 111 neurons. On the basis of their phase relation during dynamic stimulation and their response to static tilt, these neurons were classified as vertical semicircular canal related (n = 79, 71.2%) or otolith related (n = 25; 22.5%). Only seven neurons did not follow the usual response pattern and were classified as complex neurons. For the vertical canal-related neurons (n = 79) all eight major response vector orientations (ipsilateral or contralateral anterior canal, posterior canal, roll, and nose-down and nose-up pitch) were found in Fn on one side. Neurons with ipsilateral orientations were more numerous and on average more sensitive than those with contralateral orientations. Twenty-eight percent of the vertical canal-related neurons also responded to horizontal canal stimulation. None of the vertical canal-related neurons responded to static tilt. Otolith-related neurons (n = 25) had a phase relation close to head position and were considerably less numerous than canal-related neurons. Except for pitch, all other response vector orientations were found. Seventy percent of these neurons responding during dynamic stimulation also responded during static tilt. The sensitivity during dynamic stimulation was always higher than during static stimulation. Sixty-one percent of the otolith-related neurons responded also to horizontal canal stimulation. These results show that in FN, robust vestibular signals are abundant. Canal-related responses are much more common than otolith-related responses. Although for many canal neurons the responses can be related to single canal planes, convergence between vertical canals but also with horizontal canals is common.  相似文献   

6.
M Fetter 《Canadian Metallurgical Quarterly》1996,40(5-6):315-8; discussion 318-9
The otolith-semicircular canal interaction during postrotatory nystagmus was studied in six normal human subjects by applying fast, short-lasting, passive head and body tilts (90 degrees in the roll or pitch plane) 2 s after sudden stop from a constant velocity rotation (100 degrees/s) about the earth-vertical axis in yaw. Eye movements were measured with 3-D magnetic search coils. Following the head tilt, activity in the semicircular canal primary afferents continues to reflect the postrotatory angular velocity vector in head-centered coordinates, whereas otolith primary afferents signal a different orientation of the head relative to gravity. Pitch (roll) tilts away from upright during postrotatory nystagmus after yaw rotation elicited a transient vertical (torsional) VOR. Despite the change in head orientation relative to gravity, postrotatory eye velocity decayed closely along the axis of semicircular canal stimulation (horizontal in head coordinates). These results suggest that postrotary nystagmus is largely organized in head-centered rather than gravity-centered coordinates in humans as suggested by the Purkinje-sensation.  相似文献   

7.
1. We studied the contribution of the individual semicircular canals to the generation of horizontal and torsional eye movements in cynomolgus monkeys. Eye movements were elicited by sinusoidal rotation about a vertical (gravitational) axis at 0.2 Hz with the animals tilted in various attitudes of static forward or backward pitch. The gains of the horizontal and torsional components of the vestibuloocular reflex (VOR) were measured for each tilt position. The gains as a function of tilt position were fit with sinusoidal functions, and spatial gains and phases were determined. After control responses were recorded, the semicircular canals were plugged, animals were allowed to adapt, and the test procedure was repeated. Animals were prepared with only the anterior and posterior canals intact [vertical canal (VC) animals], with only the lateral canals intact [lateral canal (LC) animal], and with only one anterior and the contralateral posterior canals intact [right anterior and left posterior canal (RALP) animals; left anterior and right posterior canal (LARP) animals]. 2. In normal animals, the gain of the horizontal (yaw axis) velocity of the compensatory eye movements decreased as they were pitched forward or backward, and a torsional velocity appeared, reversing phase at the peak of the horizontal gain. After the anterior and posterior canals were plugged (LC animal), the horizontal component was reduced when the animal was tilted backward; the gain was zero with about -60 degrees of backward tilt. The spatial phase of the torsional component had the same characteristics. This is consistent with the fact that both responses were produced by the lateral canals, which from our results are tilted between 28 and 39 degrees above the horizontal stereotaxic plane. 3. After both lateral canals were plugged (VC animals), horizontal velocity was reduced in the upright position but increased as the animals were pitched backward relative to the axis of rotation. Torsional velocities, which were zero in the upright position in the normal animal, were now 180 degrees out of phase with the horizontal velocity. The peak values of the horizontal and torsional components were significantly shifted from the normal data and were closely aligned with each other, reaching peak values at approximately -56 degrees pitched back (-53 degrees horizontal, -58 degrees torsional). The same was true for the LARP and RALP animals; the peak values were at -59 degrees pitched back (-55 degrees horizontal, -62 degrees torsional). Likewise, in the LC animal the peak yaw and roll gains occurred at about the same angle of forward tilt, 35 degrees (30 degrees horizontal, 39 degrees torsional). Thus, in each case, the canal plugging had transformed the VOR from a compensatory to a direction-fixed response with regard to the head. Therefore there was no adaptation of the response planes of the individual canals after plugging. 4. The data were compared with eye velocity predictions of a model based on the geometric organization of the canals and their relation to a head coordinate frame. The model used the normal to the canal planes to form a nonorthogonal coordinate basis for representing eye velocity. An analysis of variance was used to define the goodness of fit of model predictions to the data. Model predictions and experimental data agreed closely for both normal animals and for the animals with canal lesions. Moreover, if horizontal and roll components from the LC and VC animals were combined, the summation overlay the response of the normal monkeys and the predictions of the model. In addition, a combination of the RALP and LARP animals predicted the response of the lateral-canal-plugged (VC) animals. 5. When operated animals were tested in light, the gains, peak values, and spatial phases of horizontal and roll eye velocity returned to the preoperative values, regardless of the type of surgery performed. This indicates that vision compensated for the lack o  相似文献   

8.
Visual inputs to the brain are mapped in a retinocentric reference frame, but the motor system plans movements in a body-centered frame. This basic observation implies that the brain must transform target coordinates from one reference frame to another. Physiological studies revealed that the posterior parietal cortex may contribute a large part of such a transformation, but the question remains as to whether the premotor areas receive visual information, from the parietal cortex, readily coded in body-centered coordinates. To answer this question, we studied dorsal premotor cortex (PMd) neurons in two monkeys while they performed a conditional visuomotor task and maintained fixation at different gaze angles. Visual stimuli were presented on a video monitor, and the monkeys made limb movements on a panel of three touch pads located at the bottom of the monitor. A trial begins when the monkey puts its hand on the central pad. Then, later in the trial, a colored cue instructed a limb movement to the left touch pad if red or to the right one if green. The cues lasted for a variable delay, the instructed delay period, and their offset served as the go signal. The fixation spot was presented at the center of the screen or at one of four peripheral locations. Because the monkey's head was restrained, peripheral fixations caused a deviation of the eyes within the orbit, but for each fixation angle, the instructional cue was presented at nine locations with constant retinocentric coordinates. After the presentation of the instructional cue, 133 PMd cells displayed a phasic discharge (signal-related activity), 157 were tonically active during the instructed delay period (set-related or preparatory activity), and 104 were active after the go signal in relation to movement (movement-related activity). A large proportion of cells showed variations of the discharge rate in relation to limb movement direction, but only modest proportions were sensitive to the cue's location (signal, 43%; set, 34%; movement, 29%). More importantly, the activity of most neurons (signal, 74%; set, 79%; movement, 79%) varied significantly (analysis of variance, P < 0.05) with orbital eye position. A regression analysis showed that the neuronal activity varied linearly with eye position along the horizontal and vertical axes and can be approximated by a two-dimensional regression plane. These data provide evidence that eye position signals modulate the neuronal activity beyond sensory areas, including those involved in visually guided reaching limb movements. Further, they show that neuronal activity related to movement preparation and execution combines at least two directional parameters: arm movement direction and gaze direction in space. It is suggested that a substantial population of PMd cells codes limb movement direction in a head-centered reference frame.  相似文献   

9.
The kinematics of human jaw movements were assessed in terms of the three orientation angles and three positions that characterize the motion of the jaw as a rigid body. The analysis focused on the identification of the jaw's independent movement dimensions, and was based on an examination of jaw motion paths that were plotted in various combinations of linear and angular coordinate frames. Overall, both behaviors were characterized by independent motion in four degrees of freedom. In general, when jaw movements were plotted to show orientation in the sagittal plane as a function of horizontal position, relatively straight paths were observed. In speech, the slopes and intercepts of these paths varied depending on the phonetic material. The vertical position of the jaw was observed to shift up or down so as to displace the overall form of the sagittal plane motion path of the jaw. Yaw movements were small but independent of pitch, and vertical and horizontal position. In mastication, the slope and intercept of the relationship between pitch and horizontal position were affected by the type of food and its size. However, the range of variation was less than that observed in speech. When vertical jaw position was plotted as a function of horizontal position, the basic form of the path of the jaw was maintained but could be shifted vertically. In general, larger bolus diameters were associated with lower jaw positions throughout the movement. The timing of pitch and yaw motion differed. The most common pattern involved changes in pitch angle during jaw opening followed by a phase predominated by lateral motion (yaw). Thus, in both behaviors there was evidence of independent motion in pitch, yaw, horizontal position, and vertical position. This is consistent with the idea that motions in these degrees of freedom are independently controlled.  相似文献   

10.
Motion parallax provides cues to the three-dimensional layout of a viewed scene and, in particular, to surface tilt and slant. For example, as a textured surface, inclined around a horizontal axis, translates horizontally relative to an observer's view point, then, in the absence of head and eye movements, the observer's retinal flow will contain a one-dimensional (1D) vertical speed gradient. The direction of this gradient indicates the direction of surface tilt, and its magnitude and sign can be used in calculating the magnitude and sign of the surface slant. Alternatively, the same retinal flow contains a 1D translating component, plus a two-dimensional (2D) component of rotation (curl), and a 2D component of deformation (def). On this view, the direction of surface tilt is related to the orientation of def and the magnitude and sign of the surface slant is related to the magnitude and sign of def. We used computer generated random dot patterns as stimuli to determine whether the human visual system employs a 1D analysis (i.e. 1D speed gradients) or a 2D analysis (i.e. deformation) of surface slant from motion parallax. Using a matching technique we found compelling impressions of slant when we vector summed a translation field with (i) vertical shear, horizontal shear or deformation (made from vertical and horizontal shear), but not rotation; and (ii) vertical compression, horizontal compression or deformation (made from vertical and horizontal compression), but much less so for expansion. In both cases, the first three conditions contain def, but the fourth does not, and the last three conditions contain 1D speed gradients orthogonal to the perceived axis of inclination, but the first one does not. Therefore, the results from the first and fourth conditions distinguish between the two processing strategies. They support the idea that surface slant is coded by combining both horizontal and vertical speed gradients in a way similar to the 2D differential invariant def and oppose the view that surface slant is encoded by a 1D analysis of motion in a direction orthogonal to the perceived axis of inclination. In a further experiment, we found essentially no effect of reducing the field size from 18 to 9 deg.  相似文献   

11.
Two experiments were conducted to help determine the nature of visual capture in the perception of curvature. If an individual finger-tracks a straight edge while viewing limb movements through a curve-inducing lens, the edge is reported to feel curved even though the finger is moving in a straight path. It has recently been demonstrated, however, that the finger actually tracks the straight edge through a curved path with the same orientation as the induced visual curve. In order to specify more completely the degree of relation between the visual and tracking (motor) curves the first experiment determined the fate of tracking limb-movement curvature when the eyes were closed. The second experiment determined whether curvature of tracking limb movement decreased as the magnitude of the visual curve was decreased. Results from both experiments supported the contention that curved tracking limb movement may mediate the visual and felt curves. The nature of the mechanism underlying felt curvature in visual capture was discussed.  相似文献   

12.
Reactions of the circulation system of cosmonauts to the up and down body movements were studied after 30-day and 63-day flights. All the four cosmonauts showed a decline in the orthostatic tolerance. An improved system of countermeasures against unfavourable effects of weightlessness used in the 63-day flight helped to maintain a better orthostatic tolerance of the crewmembers than that of the 30-day cosmonauts. It is assumed that a rapid increase of orthostaic tolerance postflight indicates an adequate maintenance of functional capabilities of circulation and suggests possible stimulation of its antigravity mechanisms prior to reentry in order to prevent postflight orthostatic disorders. An exposure to weightlessness increased the capacity of circulation to counteract the blood redistribution in the cranial direction in the head-down position. This capacity became more pronounced and stable with an increase in the flight time.  相似文献   

13.
Although the straightness of hand paths is a widely accepted feature of human multijoint reaching movement, detailed examinations have revealed slight curvatures in some regions of the workspace. This observation raises the question of whether planned trajectories are straight or curved. If they are straight, 3 possible factors can explain the observed curvatures: (a) imperfect control, (b) visual distortion, or (c) interaction between straight virtual trajectories and the dynamics of the arm. Participants instructed to generate straight movement paths produced movements much straighter than those generated spontaneously. Participants generated spontaneously curved trajectories in the frontoparallel plane, where visual distortion is not expected. Electromyograms suggested that participants generated straighter paths without an increase in arm stiffness. These findings argue against the 3 factors. It follows that planned trajectories are likely to be curved. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
The aim of the work is to inspect the influence of the treatment by using hyper-correcting prisms on the vertical deviations of the eyes and on the head's position in persons with nystagmus. We observed 4 persons with nystagmus without strabismus and 3 persons with convergent squint. In persons without strabismus the prismatic correction placed with an edge in the direction of the "calm's zone" (quiet's zone) to obtain the straight position of the head when looking forwards was applied. Twice a day during 10 minutes the patients were making the movement's exercises in the vertical and horizontal direction looking by the prism separately by each eye. This prism (often 35 D prism) was placed with the edge in the direction of greater deviation of the oblique inferior muscles and the left rectus inferior muscle. Patients with convergent strabismus were treated according to the principles of localization method with consideration of the localize exercises by using hyper-correcting prisms in the vertical and horizontal directions. Two patients had a surgery in order to eliminate not aesthetic and strong prisms which were applied because of large horizontal squint. One patient with convergent alternate squint with hyperactivity of both inferior oblique muscles and inferior rectus muscle of the left eye was treated without surgery, only by the conservative treatment with prisms. In all patients we obtained a straight position of the head despite of the nystagmus still existing during the eyes movements in some directions. The treatment by using hyper-correcting prisms can completely replace the surgical treatment or is able to supplement it and prevent relapses.  相似文献   

15.
According to Einstein's equivalence principle, inertial accelerations during translational motion are physically indistinguishable from gravitational accelerations experienced during tilting movements. Nevertheless, despite ambiguous sensory representation of motion in primary otolith afferents, primate oculomotor responses are appropriately compensatory for the correct translational component of the head movement. The neural computational strategies used by the brain to discriminate the two and to reliably detect translational motion were investigated in the primate vestibulo-ocular system. The experimental protocols consisted of either lateral translations, roll tilts, or combined translation-tilt paradigms. Results using both steady-state sinusoidal and transient motion profiles in darkness or near target viewing demonstrated that semicircular canal signals are necessary sensory cues for the discrimination between different sources of linear acceleration. When the semicircular canals were inactivated, horizontal eye movements (appropriate for translational motion) could no longer be correlated with head translation. Instead, translational eye movements totally reflected the erroneous primary otolith afferent signals and were correlated with the resultant acceleration, regardless of whether it resulted from translation or tilt. Therefore, at least for frequencies in which the vestibulo-ocular reflex is important for gaze stabilization (>0.1 Hz), the oculomotor system discriminates between head translation and tilt primarily by sensory integration mechanisms rather than frequency segregation of otolith afferent information. Nonlinear neural computational schemes are proposed in which not only linear acceleration information from the otolith receptors but also angular velocity signals from the semicircular canals are simultaneously used by the brain to correctly estimate the source of linear acceleration and to elicit appropriate oculomotor responses.  相似文献   

16.
Head flexion and extension movements near the natural head position (NHP) were analysed for the location of the mean instantaneous centre of rotation (ICR). Forty-six healthy young adults (30 women and 16 men) with sound dentitions, free from cranio-cervical disorders, performed habitual movements that were automatically detected and measured by an infrared three-dimensional motion analyser. ICR and curvature radius were calculated for each movement and subject. In both extension and flexion, ICR position changed during the motion. The movement was symmetrical in all subjects. No gender or flexion/extension differences were found for both ICR position and relevant curvature radius. On average, ICR relative to NHP soft-tissue nasion was located at about 150% of the soft-tissue nasion-right tragus distance, with an angle of about 220 degrees relative to the true horizontal. Results suggest that head flexion or extension is always performed with a combination of rotation (atlanto-occipital joint) and translation (cervical spine) even in the first degrees of motion. Moreover, NHP at rest seems to be some degree more flexed and anterior than head position during movements. These relative positions and their muscular determinants could also influence mandibular posture at rest and during functional movements.  相似文献   

17.
The subjective visual horizontal (SVH) was measured by means of a small rotatable luminous line in darkness in the upright body position and at 10, 20 and 30 degrees of body tilt to the right and left prior to, and during a follow-up period after, stapedotomy in 12 patients with otosclerosis. In the acute stage after surgery, SVH in the upright body position was significantly tilted away from the operated side. In addition, the perception of roll tilt towards the operated side (Kop) was significantly increased after stapedotomy, while the perception of roll tilt towards the healthy side (Khe) showed a slight but not significant reduction. After exclusion of two outliers, a statistically significant correlation was found between changes in Kop and in Khe. The slope of the regression line was 1.8:1, probably corresponding to a preference of the utricle for ipsilateral as opposed to contralateral head tilt. In four patients there was a weak ( < 1 degrees/s) spontaneous nystagmus, not systematically related to the side of surgery, while in most cases there were no nystagmus or subjective vertigo symptoms. These specific changes in the subjective horizontal show that the otolithic effects on perception can be dissociated from canal effects. Further, the results are opposite to those for patients with unilateral loss of vestibular function. The tilt of SVH after stapedotomy indicates an increase in resting activity of utricular afferents. In addition, based on recent theories on otolith function, we suggest that an increased activity in saccular afferents is of major importance for the changes in roll-tilt perception because of its interaction with the utricle on the central nervous level.  相似文献   

18.
In macaque ventral premotor cortex, we recorded the activity of neurons that responded to both visual and tactile stimuli. For these bimodal cells, the visual receptive field extended from the tactile receptive field into the adjacent space. Their tactile receptive fields were organized topographically, with the arms represented medially, the face represented in the middle, and the inside of the mouth represented laterally. For many neurons, both the visual and tactile responses were directionally selective, although many neurons also responded to stationary stimuli. In the awake monkeys, for 70% of bimodal neurons with a tactile response on the arm, the visual receptive field moved when the arm was moved. In contrast, for 0% the visual receptive field moved when the eye or head moved. Thus the visual receptive fields of most "arm + visual" cells were anchored to the arm, not to the eye or head. In the anesthetized monkey, the effect of arm position was similar. For 95% of bimodal neurons with a tactile response on the face, the visual receptive field moved as the head was rotated. In contrast, for 15% the visual receptive field moved with the eye and for 0% it moved with the arm. Thus the visual receptive fields of most "face + visual" cells were anchored to the head, not to the eye or arm. To construct a visual receptive field anchored to the arm, it is necessary to integrate the position of the arm, head, and eye. For arm + visual cells, the spontaneous activity, the magnitude of the visual response, and sometimes both were modulated by the position of the arm (37%), the head (75%), and the eye (58%). In contrast, to construct a visual receptive field that is anchored to the head, it is necessary to use the position of the eye, but not of the head or the arm. For face + visual cells, the spontaneous activity and/or response magnitude was modulated by the position of the eyes (88%), but not of the head or the arm (0%). Visual receptive fields anchored to the arm can encode stimulus location in "arm-centered" coordinates, and would be useful for guiding arm movements. Visual receptive fields anchored to the head can likewise encode stimuli in "head-centered" coordinates, useful for guiding head movements. Sixty-three percent of face + visual neurons responded during voluntary movements of the head. We suggest that "body-part-centered" coordinates provide a general solution to a problem of sensory-motor integration: sensory stimuli are located in a coordinate system anchored to a particular body part.  相似文献   

19.
The spatial transformation of semicircular canal signals to extraocular motor signals was studied by recording abducens nerve responses in grass and water frogs. Both species have similar vestibular canal coordinates but dissimilar orientations of their optic axes. Before sinusoidal oscillation in darkness the static head position was systematically altered to determine the planes of head oscillation in pitch and roll associated with minimal abducens nerve responses. Measured data and known canal plane vectors were used to calculate the abducens response vector in canal coordinates. The abducens vector deviated from the horizontal canal plane vector in grass frogs by 15 degrees and in water frogs by 34 degrees but was aligned with the pulling direction of the lateral rectus muscle in each of the two species. Lesion experiments demonstrated the importance of convergent inputs from the contralateral horizontal and anterior semicircular canals for the orientation of the abducens response vector. Thus, the orientation of the optic axis and the pulling directions of extraocular muscles are taken into account by the central organization of vestibulo-ocular reflexes. Horizontal and vertical canal signals are combined species-specifically to transform the spatial coordinates of sensory signals into appropriate extraocular motor signals.  相似文献   

20.
Eye-head coordination during saccadic gaze shifts normally relies on vestibular information. A vestibulo-saccadic reflex (VSR) is thought to reduce the eye-in-head saccade to account for current head movement, and the vestibulo-ocular reflex (VOR) stabilizes postsaccadic gaze while the head movement is still going on. Acute bilateral loss of vestibular function is known to cause overshoot of gaze saccades and postsaccadic instability. We asked how patients suffering from chronic vestibular loss adapt to this situation. Eye and head movements were recorded from six patients and six normal control subjects. Subjects tracked a random sequence of horizontal target steps, with their heads (1) fixed in primary position, (2) free to move, or (3) preadjusted to different head-to-target offsets (to provoke head movements of different amplitudes). Patients made later and smaller head movements than normals and accepted correspondingly larger eye eccentricities. Targeting accuracy, in terms of the mean of the signed gaze error, was better in patients than in normals. However, unlike in normals, the errors of patients exhibited a large scatter and included many overshoots. These overshoots cannot be attributed to the loss of VSR because they also occurred when the head was not moving and were diminished when large head movements were provoked. Patients' postsaccadic stability was, on average, almost as good as that of normals, but the individual responses again showed a large scatter. Also, there were many cases of inappropriate postsaccadic slow eye movements, e.g., in the absence of concurrent head movements, and correction saccades, e.g., although gaze was already on target. Performance in patients was affected only marginally when large head movements were provoked. Except for the larger lag of the head upon the eye, the temporal coupling of eye and head movements in patients was similar to that in normals. Our findings show that patients with chronic vestibular loss regain the ability to make functionally appropriate gaze saccades. We assume, in line with previous work, three main compensatory mechanisms: a head movement efference copy, an active cervico-ocular reflex (COR), and a preprogrammed backsliding of the eyes. However, the large trial-to-trial variability of targeting accuracy and postsaccadic stability indicates that the saccadic gaze system of patients does not regain the high precision that is observed in normals and which appears to require a vestibular head-in-space signal. Moreover, this variability also permeates their gaze performance in the absence of head movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号