首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
荣涛  唐惠庆  范楷  孙艳军 《钢铁》2020,55(5):10-19
 高炉炼铁是主要的铁水生产工艺,低焦比炼铁一直是高炉节能的重要指标。研究了高含碳金属化团块在高炉中的应用,以达到节约焦炭的目的。利用超细氧化铁粉和非焦煤煤粉为原料在管式加热炉中通过直接还原制备了碳质量分数为15.6%的高含碳金属化团块;在模拟高炉环境的条件下,考察了团块质量变化、团块部分反应后抗碎强度变化和团块微观结构变化;利用自制的热重装置考察了团块内碳的气化动力学;以试验结果为基础,结合高炉数学模型,对利用高含碳金属化团块实现高炉炼铁节约焦炭的效果进行了定量分析。试验结果表明,在高炉环境下,团块部分反应后抗碎强度可以保持在1 200 N/个以上,团块的反应主要为碳溶损反应,且团块有较高的CO2反应性。对2 500 m3高炉的模拟结果表明,在高炉的含铁炉料层中添加质量分数为5%的高含碳金属化团块,生产率可以提高419 t/d,生产1 t铁水可以节约焦炭11.3 kg,且高炉的操作参数不需要进行调整。  相似文献   

2.
针对高炉炼铁节能减排的新要求,在H2-H2O-N2和CO-CO2-N2气氛下研究碳复合团块的反应行为。通过化学分析法、X射线衍射(XRD)和扫描电子显微镜-能谱(SEM-EDS)分析了复合团块的成分、矿相及微观形貌,对CO-CO2-N2和H2-H2O-N2气氛下碳复合团块的还原行为进行了分析,并建立了复合团块反应动力学模型。结果表明,在1 073、1 173、1 273、1 373 K温度下,复合团块在H2-H2O-N2气氛下的还原度和碳气化率均高于CO-CO2-N2气氛。对2种气氛下含碳团块在1 273 K时的反应过程进行分析,XRD图谱表明,在H2-H2O-N2气氛下反应20 min后,团块中...  相似文献   

3.
为了建立了内配碳团块CO CO2气氛下反应的数学模型并验证模型的正确性,根据还原动力学原理模拟计算内配碳团块在CO CO2气氛下的还原过程,对不同温度下的团块还原度、团块碳转化率的模拟值和实验值之间的比较证明了模型的可靠性。经过研究发现模型的反应包括了铁氧化物的逐级还原、碳的boudouard反应和金属铁的再氧化。在1473K和CO CO2气氛下对内配碳团块的反应进程的模拟分析表明,在早期阶段内配碳团块显示出自还原的特征;在团块达到其最大还原度时,团块内氧化铁还原和金属铁再氧化同时存在;在后期阶段,团块内主要是金属铁的再氧化反应。在1473K和CO CO2气氛下对影响内配碳团块反应行为的相关因素的模拟结果表明,改变铁矿粉反应性或还原剂气化性不能有效提高内配碳团块的最终还原度,但是减小孔隙率可以提高团块的最终还原度。  相似文献   

4.
为了建立内配碳团块CO-CO_2气氛下反应的数学模型并验证模型的正确性,根据还原动力学原理模拟计算内配碳团块在CO-CO_2气氛下的还原过程,通过对不同温度下的团块还原度、团块碳转化率的模拟值和实验值之间的比较证明了模型的可靠性。经过研究发现模型的反应包括了铁氧化物的逐级还原、碳的Boudouard反应和金属铁的再氧化。在1 473 K和CO-CO_2气氛下对内配碳团块的反应进程的模拟分析表明,在早期阶段内配碳团块显示出自还原的特征;在团块达到其最大还原度时,团块内氧化铁还原和金属铁再氧化同时存在;在后期阶段,团块内主要是金属铁的再氧化反应。在1 473 K和CO-CO_2气氛下对影响内配碳团块反应行为的相关因素的模拟结果表明,改变铁矿粉反应性或还原剂气化性不能有效提高内配碳团块的最终还原度,但是减小孔隙率可以提高团块的最终还原度。  相似文献   

5.
采用热重法在1173~1373 K、全CO气氛条件下,对首钢烧结矿进行还原动力学实验,确定了还原反应的表观活化能,进而推断在还原反应的前期烧结矿还原速率均由界面反应控制,还原反应后期的控制环节为固相扩散.分别由未反应核模型和固相反应动力学模型,分段给出不同温度下控制环节突变的时间点;通过动力学公式计算,得出不同温度下的反应速率常数和固相扩散系数.利用光学显微镜观察了烧结矿在各还原阶段的微观形貌,验证了烧结矿还原动力学的机理,同时也证明了扩散控制阶段使用体积缩小的未反应核模型与实际情况是吻合的.   相似文献   

6.
通过分析生物质合成气气氛下,不同组分复合球团(添加和未添加生物质)的还原速率、还原度、表面微观结构和失重变化规律.对球团中添加生物质的作用机理以及含生物质球团还原过程的限制性环节展开研究.添加生物质的复合球团表面结构比无生物质球团疏松,孔隙率高,有利于后续还原的热质传递,增加产物还原度,降低反应活化能;复合球团的还原以收缩核方式进行,在1123~1323K温度范围内,界面化学反应是两种球团还原反应的主要控速环节;添加生物质后,有利于界面化学反应的进行.使得球团的还原表观活化能由95.448kJ·mol-1降低到68.131kJ·mol-1.   相似文献   

7.
高炉使用金属化炉料作为一种新型的低碳炼铁技术为高炉炼铁过程深度降碳提供了新的可能。由于金属化炉料的易再氧化性,装入高炉炉顶中的金属化炉料是否能被炉顶煤气中的CO2再氧化成为一个需要关注的问题。对70%金属化率炉料在体积分数为50%CO2+50%CO气体混合物中的非等温反应过程动力学进行了研究。采用KAS动力学分析方法计算了反应过程的表观活化能和反应机理,分析了反应过程的特征温度。结果表明,70%金属化率炉料在50%CO2+50%CO混合气氛中的非等温反应过程表现为单步反应行为,反应的最佳机理模型为化学反应控制的A1模型。金属化炉料低温下反应需要克服较大的反应能垒,主要反应阶段的表观活化能为114.22 kJ/mol,指前因子为2 785/s。金属化炉料反应过程随加热速率增大存在滞后现象,加热速率从5 K/min增大到20 K/min时,反应开始温度从1 045 K增加至1 140 K,快速反应温度从1 267 K增加到1 470 K,而实际高炉炉顶温度远低于1 045 K,因此金属化炉料在高炉顶部不...  相似文献   

8.
结合风口回旋区燃烧和炉外煤气预热、脱除和循环的平衡关系,建立了氧气高炉一维气固换热与反应动力学模型,并采用传统高炉的运行和解剖数据对模型进行了验证分析.通过模型研究了氧气含量和上部循环煤气流量对氧气高炉炉内过程变量的影响规律.结果表明:氧气含量偏低和上部循环煤气流量不足时,会降低铁矿石还原效果,炉渣内出现大量未还原铁氧化物;氧气含量和上部循环煤气流量的提高可以有效提高炉内CO含量和铁矿石还原速度,但提高上部循环煤气流量会大幅提升炉顶煤气温度,增大热量损失.与传统高炉相比,氧气高炉内CO含量提高1.0~1.5倍,炉内气体还原性更强;铁矿石还原完成位置提高1.49 m,全炉还原反应速度更快;直接还原度降低55.2%~79.2%,炉内直接还原反应消耗的碳量更少.   相似文献   

9.
炉顶煤气循环氧气高炉采用纯氧鼓风以及炉顶煤气循环利用工艺使得炉内煤气成分与传统高炉相比发生了改变,炉内的煤气成分主要以H2和CO为主.为了研究还原性气体H2和CO对球团矿还原行为的影响,分别用H2-N2、CO-N2、H2-CO混合气体在1173K下通过热重的方法进行试验.研究发现还原度随着混合气体中H2或CO比例的增加而增加,但是H2的还原能力明显比CO要强.在H2-CO混合气体中H2的加入有利于还原进行.用H2-CO混合气体还原得到的还原速率不能用H2-N2和CO-N2混合气体下得到的还原速率相加得到.微观结构观察发现,用H2进行还原时得到的铁结构较致密,而用CO还原时铁会破裂为许多小碎片.在用含一氧化碳的混合气体进行还原时,还原度曲线在还原后期由于碳沉积导致出现下降的趋势.还原气体中氢气的存在会加剧碳沉积现象,而氮气的存在会抑制这一现象.对还原后试样进行X射线衍射以及化学分析表明试样中的碳以碳化铁(Fe3C)和石墨形式存在.  相似文献   

10.
高炉富氢是降低高炉能耗与碳排放重要途径,为确定高炉合适富氢率,研究了不同富氢率条件下钒钛矿的软熔滴落过程,并采用历程中断法分析了钒钛烧结矿、球团矿的非等温还原行为。研究结果表明,高炉富氢改善了钒钛矿还原条件,随煤气富氢率的增加,钒钛烧结矿、球团矿的还原度升高,尤其是高温条件下,煤气富氢率对还原的影响更为明显,初渣中FeO含量减少,初渣渣量降低,冶炼钒钛矿高炉富氢后软熔带位置下移,厚度减薄,尤其是透气性最差的熔融区间变窄,透气性增加;由于物理形貌和结构特征的不同,钒钛烧结矿与球团矿的还原速率随富氢率的增加表现出不同的变化趋势,富氢后钒钛烧结矿的还原速率在900~1 000℃达到最大值,而钒钛球团矿的还原速率随温度的增加呈增加趋势。高炉富氢恶化了钒钛矿非等温还原过程的粉化指标,适当减小炉身角可缓解富氢高炉块状带钒钛矿还原粉化现象。当煤气中富氢率以5%幅度增加时对钒钛矿非等温还原和软熔滴落性能的影响是不同的,富氢率由0增加到5%时的影响最大,其次是由5%增加到10%,富氢率超过10%时对钒钛烧矿的还原及软熔滴落行为影响较小,综合考虑还原气体富氢率对钒钛矿非温度还原、软熔滴落性能和软熔带分布的...  相似文献   

11.
“碳达峰”和“碳中和”是中国钢铁工业未来发展的总体规划,降低碳排放是钢铁企业需要共同攻克的技术难题。从源头减碳、过程节碳和末端用碳3个层面分析了中国低碳炼铁技术的发展路径,提出了实现“碳中和”需要解决的关键技术问题。分析表明废钢电炉短流程炼钢将是中国钢铁行业实现“碳中和”的主要途径,氢气竖炉直接还原将是中国钢铁行业实现“碳中和”的重要补充。高炉喷吹富氢气体、氧气高炉和全氧熔融还原炼铁等技术可以减少碳排放,但碳排放的减少量有限,必须要与末端CO2吸附、储存和利用相结合,才能够实现“碳中和”。为了按期实现钢铁工业的“碳中和”,需要解决的关键技术问题有低成本氢气制备技术、煤气高温加热技术、炉顶煤气CO2低成本脱除技术和CO2的储存与利用技术。  相似文献   

12.
纯氧高炉和煤气化耦合联产是降低炼铁和煤气化工艺能耗和碳排放的重要手段,而研究不同反应性炭的气化差异及其对铁矿石还原影响是实现煤气调质与降低焦比的关键.在模拟纯氧高炉与煤气化耦合联产工艺条件下进行了木炭、兰炭、焦炭的气化和烧结矿、球团矿的还原试验研究.研究结果表明,3种炭与CO2和水蒸气的反应性由强到弱的顺序为木炭>兰炭...  相似文献   

13.
铁焦制备与高炉应用的研究进展   总被引:1,自引:1,他引:0  
 钢铁工业长期面临着资源短缺和环境污染的的发展现状,实现节能减排和绿色冶金是钢铁工业实现可持续发展的重点。而高炉炼铁是钢铁工业节能减排的关键,急需研发低碳高炉炼铁新技术。复合铁焦是实现低碳高炉炼铁的一种新型碳铁复合炉料。高炉使用铁焦后可降低热储备区温度,提高冶炼效率,降低焦比,从而实现CO2减排。综述了国内外铁焦制备与应用的研究进展,主要包括铁焦的制备工艺和高炉应用。归纳了各种铁焦制备工艺的特点。同时提出并研究了矿煤压块-竖炉炭化-高炉应用的冷压型铁焦制备与应用新技术。重点进行了冷压型铁焦的制备及冶金性能优化、高炉应用冷压型铁焦等试验研究。冷压型铁焦制备适宜的工艺条件为,质量分数为30%铁矿粉、45%烟煤1、10%烟煤2、10%烟煤3、5%无烟煤、5%沥青类黏结剂B混合加热至60 ℃,并进行冷压成型;成型压块再经竖炉1 000 ℃炭化4 h;获得抗压强度3 977 N、I型转鼓强度77.7%、反应性69.7%、反应后强(固定气化溶损量20%)42%的优质铁焦。高炉综合炉料中添加质量分数20%~30%冷压型铁焦,综合炉料熔滴性能明显改善。以上研究为铁焦实现工业化生产与低碳高炉炼铁应用提供了参考。  相似文献   

14.
黄浚宸  汪琦  张松 《钢铁》2022,57(3):16-26
焦炭作为重要的炼铁原料,其热态性能的优劣备受关注.而同一种焦炭使用不同热性质评价体系(CRI、CSR、CRR25、CSR25)得到的结果可能完全不同,根源在于对焦炭溶损反应机理的认知不够深入全面.焦炭发生溶损反应过程中,气体非等摩尔扩散这一因素常常被忽略,导致对焦炭溶损反应机理的认知出现偏差.为了能够更加清晰全面地了解...  相似文献   

15.
 由于全球气候变暖,CO2的减排逐渐成为人们关注的热点。钢铁工业作为CO2排放大户,需要严格控制其CO2的排放量,富氢炼铁由于具有降低碳排放的特点,已经成为冶金工艺未来发展趋势,但富氢燃料的使用会在高炉内产生大量水蒸气,所以研究高炉中不同种类焦炭与CO2-H2O混合气体在气化溶损反应下的变化至关重要,可以为高炉富氢冶炼条件下焦炭的选择和质量的控制提供理论依据。通过研究不同含量CO2-H2O气体通入管式炉中与捣固焦和顶装焦发生深度气化溶损反应,分析CO2-H2O混合气体中水蒸气含量变化产生的气化反应溶损差异、焦炭有机官能团和碳素结构的变化规律以及利用未反应核模型分析气化反应过程中限制性环节。研究结果表明,两种焦炭气化反应的限制性环节为界面化学反应,通过对比顶装焦和捣固焦颗粒气化溶损过程中边缘、中间、中心隙结构和相对密度上的差异发现,随着CO2-H2O混合气体中水蒸气含量的增加,两种焦炭表面溶损反应较其他两部分更加严重,出现了明显的开孔现象,并且捣固焦的内部开裂情况更加严重。结合FT-IR分析可知,水蒸气能够加剧气化反应过程中顶装焦和捣固焦结构内脂肪族官能团和甲基的消耗,从而导致两种焦炭的芳香度升高,同时反应后捣固焦样品中芳香烃的缩合程度增加。  相似文献   

16.
张福明 《钢铁》2022,57(9):11-25
 现代高炉炼铁是以人造矿石和焦炭为物质基础的。现代高炉实现绿色低碳炼铁,需要从炼铁工序的层次优化工艺流程和关键技术,实现烧结、球团、高炉等多工序的协同优化。面向未来,在提高资源和能源利用效率的同时,基于现有技术推进采用低碳节能技术和先进工艺。对于烧结、高炉等传统工艺技术,要进一步研究并应用先进技术,提高生产效能、降低能源消耗和碳排放。持续研究推广绿色低碳烧结技术,如低碳厚料层烧结技术、烧结料面富氢气体喷吹技术、烧结返矿高效回收利用技术、低温烧结技术和热风循环烧结技术等,有效降低烧结过程的能源消耗和CO2排放。充分利用中国精矿粉资源生产球团矿,提高球团矿产能和产量,进而提高球团矿入炉比率和炉料综合品位,有效降低碳素燃料消耗。提高高炉富氧率和喷煤量,持续提高风温、降低燃料消耗,提高高炉顶压和煤气利用率。有条件的高炉喷吹富氢气体以减少焦炭消耗,开发应用高炉炉顶煤气循环及CO2脱除再利用(CCUS)等技术。研究解析了高炉炼铁工艺碳-氢耦合还原的热力学机理,讨论了在高炉内不同温度区域固体碳、CO和H2的还原能力,提出了直接还原与间接还原的耦合匹配是实现最低燃料比的技术核心,探讨了高炉炼铁喷吹全氢/富氢气体的技术可行性和经济性。这些综合技术措施对于进一步降低高炉工艺流程的碳素消耗、减少CO2排放具有显著效应。与此同时,设计先进合理的流程系统和耗散结构,优化工序界面技术,构建信息物理系统(CPS)实现炼铁工序协同高效、动态有序运行,这也是高炉炼铁工艺实现绿色低碳的关键共性技术之一,具有广泛的适用性和显著的应用效果。  相似文献   

17.
钢铁生产过程CO2的资源利用问题将对我国CO2减排任务的完成起到重要作用.以CO2在钢铁工业中的资源化利用为出发点,分析了国内外CO2气体作为反应气体、搅拌气体及保护气体等在钢铁生产过程中的应用现状. CO2用作反应气体主要应用在BOF转炉炼钢、不锈钢生产及钢渣碳酸化处理;CO2用作搅拌气体主要应用于转炉底吹、钢包搅拌及LF炉精炼;CO2用作保护气主要应用在出钢、中间包及连铸等工序.利用CO2用于钢铁生产具有成本低、热力学条件好、密度大、搅拌能力强及实现CO2资源利用等优点,CO2喷吹之后反应体系中CO2的利用率需进一步研究.   相似文献   

18.
直接还原铁比较纯净、成分稳定,是电炉炼钢的优质原料。中国焦化行业产生大量焦炉煤气,适宜发展以焦炉煤气为还原气的竖炉直接还原炼铁流程,现有工艺主要有Midrex工艺和HYL-ZR工艺。为了解决Midrex工艺和HYL-ZR工艺所存在的问题,通过流程功能分析,提出气基竖炉直接还原重构优化流程,主要工序包括焦炉煤气压缩、TSA预处理、PSA脱碳、PSA提纯CH4、富氢气加热、竖炉直接还原炼铁等。该流程不仅净化焦炉煤气,而且可分离CH4,使还原气中H2与CO的比例达到8,并省去CH4重整环节,提高炉内直接还原效率。该流程前端与焦化工序连接,后端与电弧炉连接,不仅有利于钢铁联合企业资源优化配置,而且可以生产天然气,提高能源利用效率。  相似文献   

19.
钢液真空循环脱气法(RH)精炼能够利用高真空和钢液循环流动有效脱气和去除夹杂物。同时,炼钢环境下 CO2可与钢液中[C]反应生成CO提高搅拌强度。因此,本文提出将CO2作为RH提升气进行真空精炼。针对CO2在RH精炼过程的冶金反应行为特性,通过热力学理论分析了极限真空条件下CO2脱碳的有利条件及限度,同时搭建了CO2作RH提升气工业试验平台,通过工业试验对比研究了CO2/Ar分别作提升气时对钢液精炼过程的影响。结果表明,若单纯考虑CO2与碳反应,则当钢液中[C]低于1.8×10?6,CO2仍然具有氧化碳元素的能力。然而,CO2对钢液中碳铝元素存在选择性氧化,当铝含量低于一定程度时,CO2主要参与脱碳反应;反之,CO2则会造成一定铝损,因此若采用新工艺需考虑铝合金加入时机以及加入量。此外,CO2用作RH提升气可获得与Ar效果相当甚至更优的脱氢效果,喷吹同等量CO2并未造成钢液的大幅温降,因此CO2完全有潜力作为RH提升气,进而完成精炼。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号