首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proof-of-concept pMOSFETs with a strained-Si/sub 0.7/Ge/sub 0.3/ surface-channel deposited by selective epitaxy and a TiN/Al/sub 2/O/sub 3//HfAlO/sub x//Al/sub 2/O/sub 3/ gate stack grown by atomic layer chemical vapor deposition (ALD) techniques were fabricated. The Si/sub 0.7/Ge/sub 0.3/ pMOSFETs exhibited more than 30% higher current drive and peak transconductance than reference Si pMOSFETs with the same gate stack. The effective mobility for the Si reference coincided with the universal hole mobility curve for Si. The presence of a relatively low density of interface states, determined as 3.3 /spl times/ 10/sup 11/ cm/sup -2/ eV/sup -1/, yielded a subthreshold slope of 75 mV/dec. for the Si reference. For the Si/sub 0.7/Ge/sub 0.3/ pMOSFETs, these values were 1.6 /spl times/ 10/sup 12/ cm/sup -2/ eV/sup -1/ and 110 mV/dec., respectively.  相似文献   

2.
In this letter, we report germanium (Ge) p-channel MOSFETs with a thin gate stack of Ge oxynitride and low-temperature oxide (LTO) on bulk Ge substrate without a silicon (Si) cap layer. The fabricated devices show 2 /spl times/ higher transconductance and /spl sim/ 40% hole mobility enhancement over the Si control with a thermal SiO/sub 2/ gate dielectric, as well as the excellent subthreshold characteristics. For the first time, we demonstrate Ge MOSFETs with less than 100-mV/dec subthreshold slope.  相似文献   

3.
For the first time, the tradeoffs between higher mobility (smaller bandgap) channel and lower band-to-band tunneling (BTBT) leakage have been investigated. In particular, through detailed experiments and simulations, the transport and leakage in ultrathin (UT) strained germanium (Ge) MOSFETs on bulk and silicon-on-insulator (SOI) have been examined. In the case of strained Ge MOSFETs on bulk Si, the resulting optimal structure obtained was a UT low-defect 2-nm fully strained Ge epi channel on relaxed Si, with a 4-nm Si cap layer. The fabricated device shows very high mobility enhancements >3.5/spl times/ over bulk Si devices, 2/spl times/ mobility enhancement and >10/spl times/ BTBT reduction over 4-nm strained Ge, and surface channel 50% strained SiGe devices. Strained SiGe MOSFETs having UT (T/sub Ge/<3 nm) very high Ge fraction (/spl sim/ 80%) channel and Si cap (T/sub Si cap/<3 nm) have also been successfully fabricated on thin relaxed SOI substrates (T/sub SOI/=9 nm). The tradeoffs in obtaining a high-mobility (smaller bandgap) channel with low tunneling leakage on UT-SOI have been investigated in detail. The fabricated device shows very high mobility enhancements of >4/spl times/ over bulk Si devices, >2.5/spl times/ over strained silicon directly on insulator (SSDOI; strained to 20% relaxed SiGe) devices, and >1.5/spl times/ over 60% strained SiGe (on relaxed bulk Si) devices.  相似文献   

4.
We present an experimental study of the transport properties (low field hole mobility /spl mu//sub h/) and electrostatics (threshold voltage V/sub th/, and gate-to-channel capacitance C/sub gc/) of ultrathin body (UTB) SOI pMOSFETs using a large RingFet structure. Body thicknesses were /spl sim/4.3 nm to 50 nm. We find that 1) hole mobility decreases significantly as T/sub Si/<10 nm, and tends to show negligible dependence on the transverse electric field for extremely thin T/sub Si/ (<6 nm) and 2) a V/sub th/ shift of /spl sim/150 mV occurs over the studied T/sub Si/ range, accompanied by enhancement of weak inversion capacitance in thin body devices. Simulations were performed to provide insight into the experimental observations.  相似文献   

5.
High-hole and electron mobility in complementary channels in strained silicon (Si) on top of strained Si/sub 0.4/Ge/sub 0.6/, both grown on a relaxed Si/sub 0.7/Ge/sub 0.3/ virtual substrate is shown for the first time. The buried Si/sub 0.4/Ge/sub 0.6/ serves as a high-mobility p-channel, and the strained-Si cap serves as a high-mobility n-channel. The effective mobility, measured in devices with a 20-/spl mu/m gate length and 3.8-nm gate oxide, shows about 2.2/spl sim/2.5 and 2.0 times enhancement in hole and electron mobility, respectively, across a wide vertical field range. In addition, it is found that as the Si cap thickness decreased, PMOS transistors exhibited increased mobility especially at medium- and high-hole density in this heterostructure.  相似文献   

6.
An ultrathin vertical channel (UTVC) MOSFET with an asymmetric gate-overlapped low-doped drain (LDD) is experimentally demonstrated. In the structure, the UTVC (15 nm) was obtained using the cost-effective solid phase epitaxy, and the boron-doped poly-Si/sub 0.5/Ge/sub 0.5/ gate was adopted to adjust the threshold voltage. The fabricated NMOSFET offers high-current drive due to the lightly doped (<1/spl times/10/sup 15/ cm/sup -3/) channel, which suppresses the electron mobility degradation. Moreover, an asymmetric gate-overlapped LDD was used to suppress the offstate leakage current and reduce the source/drain series resistance significantly as compared to the conventional symmetrical LDD. The on-current drive, offstate leakage current, subthreshold slope, and DIBL for the fabricated 50-nm devices are 325 /spl mu/A//spl mu/m, 8/spl times/10/sup -9/ /spl mu/A//spl mu/m, 87 mV/V, and 95 mV/dec, respectively.  相似文献   

7.
Body-tied triple-gate pMOSFETs were fabricated using bulk Si wafers and characterized. Process steps to implement the devices are explained briefly. Device characteristics of the triple-gate pMOSFETs were compared with those of the conventional planar channel device. While maintaining low off-leakage currents and threshold voltages similar to those of planar pMOSFETs in the parallel arrayed 30 000 transistors, the body-tied triple-gate MOSFETs showed about 74 mV/dec of subthreshold swing (92 mV/dec for conventional devices) and a drain-induced barrier lowering of 34 mV/V (92 mV/V for conventional devices). It was also addressed that I/sub SUB//I/sub D/ of the body-tied triple-gate is lower than that of the planar channel device.  相似文献   

8.
We report for the first time drive current enhancement and higher mobilities than the universal mobility for SiO/sub 2/ on Si in compressively strained Si/sub 1-x/Ge/sub x/-on-Si surface channel PMOSFETs with HfO/sub 2/ gate dielectrics, for gate lengths (L/sub G/) down to 180 nm. Thirty six percent drive current enhancement was achieved for Si/sub 0.8/Ge/sub 0.2/ channel PMOSFETs compared to Si PMOSFETs with HfO/sub 2/ gate dielectric. We demonstrate that using Si/sub 1-x/Ge/sub x/ in the channel may be one way to recover the mobility degradation due to the use of HfO/sub 2/ on Si.  相似文献   

9.
Buried-channel (BC) high-/spl kappa//metal gate pMOSFETs were fabricated on Ge/sub 1-x/C/sub x/ layers for the first time. Ge/sub 1-x/C/sub x/ was grown directly on Si (100) by ultrahigh-vacuum chemical vapor deposition using methylgermane (CH/sub 3/GeH/sub 3/) and germane (GeH/sub 4/) precursors at 450/spl deg/C and 5 mtorr. High-quality films were achieved with a very low root-mean-square roughness of 3 /spl Aring/ measured by atomic force microscopy. The carbon (C) content in the Ge/sub 1-x/C/sub x/ layer was approximately 1 at.% as measured by secondary ion mass spectrometry. Ge/sub 1-x/C/sub x/ BC pMOSFETs with an effective oxide thickness of 1.9 nm and a gate length of 10 /spl mu/m exhibited high saturation drain current of 10.8 /spl mu/A//spl mu/m for a gate voltage overdrive of -1.0 V. Compared to Si control devices, the BC pMOSFETs showed 2/spl times/ enhancement in the saturation drain current and 1.6/spl times/ enhancement in the transconductance. The I/sub on//I/sub off/ ratio was greater than 5/spl times/10/sup 4/. The improved drain current represented an effective hole mobility enhancement of 1.5/spl times/ over the universal mobility curve for Si.  相似文献   

10.
This paper describes an extensive experimental study of TiN/HfO/sub 2//SiGe and TiN/HfO/sub 2//Si cap/SiGe gate stacked-transistors. Through a careful analysis of the interface quality (interface states and roughness), we demonstrate that an ultrathin silicon cap is mandatory to obtain high hole mobility enhancement. Based on quantum mechanical simulations and capacitance-voltage characterization, we show that this silicon cap is not contributing any silicon parasitic channel conduction and degrades by only 1 /spl Aring/ the electrical oxide thickness in inversion. Due to this interface optimization, Si/sub 0.72/Ge/sub 0.28/ pMOSFETs exhibit a 58% higher mobility at high effective field (1 MV/cm) than the universal SiO/sub 2//Si reference and a 90% higher mobility than the HfO/sub 2//Si reference. This represents one of the best hole mobility results at 1 MV/cm ever reported with a high-/spl kappa//metal gate stack. We thus validate a possible solution to drastically improve the hole mobility in Si MOSFETs with high-/spl kappa/ gate dielectrics.  相似文献   

11.
Mobility enhancement in dual-channel P-MOSFETs   总被引:1,自引:0,他引:1  
Hole mobility is characterized in P-MOSFETs with a layered substrate consisting of tensile strained Si cap on a compressively strained Si/sub 0.4/Ge/sub 0.6/ buried layer grown pseudomorphically to a relaxed Si/sub 0.7/Ge/sub 0.3/ virtual substrate. Besides the expected mobility enhancement in the strained Si cap and in the buried Si/sub 0.4/Ge/sub 0.6/ layer, a second peak in mobility versus total inversion carrier areal density curve was observed under strong inversion conditions in thin Si-cap layer samples. Qualitatively, this reversed mobility trend can be correlated to the transition of inversion conduction from the buried layer to the surface layer, but quantitative analysis reveals that the surface layer mobility in thin Si-cap samples needs to be substantially larger than that in thick-cap samples, if it can be assumed that mobility is a function of transverse field. Further analysis found that, if it is assumed that mobility is a function of inversion carrier density, measured mobility curves can be matched consistently with a single set of mobility-carrier-density relationship.  相似文献   

12.
In this paper, an ultrathin vertical channel (UTVC) CMOS with self-aligned asymmetric lightly doped drain is experimentally demonstrated. In the structure, the UTVC was obtained using solid phase epitaxy, and the midgap material, boron-doped poly-Si/sub 0.5/Ge/sub 0.5/, was used as the gate electrode to obtain symmetrical threshold voltages for both the NMOS and PMOS devices. Due to the ultrathin channel, the fabricated CMOS devices offer good immunity to short channel effects, and the typical subthreshold slopes of the 80 nm NMOS and PMOS are 102 mV/dec and 120 mV/dec, respectively. The fabricated CMOS inverters also show reasonable transfer characteristics. The UTVC CMOS technology provides a simple way to implement sub-100 nm devices for ULSI applications.  相似文献   

13.
High-performance nMOSFETs using a novel strained Si/SiGe CMOS architecture   总被引:2,自引:0,他引:2  
Performance enhancements of up to 170% in drain current, maximum transconductance, and field-effect mobility are presented for nMOSFETs fabricated with strained-Si channels compared with identically processed bulk Si MOSFETs. A novel layer structure comprising Si/Si/sub 0.7/Ge/sub 0.3/ on an Si/sub 0.85/Ge/sub 0.15/ virtual substrate (VS) offers improved performance advantages and a strain-compensated structure. A high thermal budget process produces devices having excellent on/off-state drain-current characteristics, transconductance, and subthreshold characteristics. The virtual substrate does not require chemical-mechanical polishing and the same performance enhancement is achieved with and without a titanium salicide process.  相似文献   

14.
This letter reports on an integration of dual-strained surface-channel CMOS structure, i.e., tensile-strained Si n-MOSFET and compressive strained-SiGe p-MOSFET. This has been accomplished by forming the relaxed and compressive strained-SiGe layers simultaneously on an Si/SiGe-on-insulator (SOI) substrate, through varying SiGe film thicknesses, followed by a thermal condensation technique to convert the Si body into SiGe with different [Ge] concentration and with different strains (including the relaxed state). A thin Si film was selectively deposited over the relaxed SiGe region. The p-MOSFET in compressive (/spl epsiv//spl sim/ -1.07%) strained- Si/sub 0.55/Ge/sub 0.45/ and the n-MOSFET in tensile-strained Si over the relaxed Si/sub 0.80/Ge/sub 0.20/ exhibited significant hole (enhancement factor /spl sim/ 1.9) and electron (enhancement factor /spl sim/ 1.6) mobility enhancements over the Si reference.  相似文献   

15.
Long-channel Ge pMOSFETs and nMOSFETs were fabricated with high-kappa CeO2/HfO2/TiN gate stacks. CeO2 was found to provide effective passivation of the Ge surface, with low diode surface leakage currents. The pMOSFETs showed a large I ON/IOFF ratio of 106, a subthreshold slope of 107 mV/dec, and a peak mobility of approximately 90 cm2 /Vmiddots at 0.25 MV/cm. The nMOSFET performance was compromised by poor junction formation and demonstrated a peak mobility of only ~3 cm2/Vmiddots but did show an encouraging ION/I OFF ratio of 105 and a subthreshold slope of 85 mV/dec  相似文献   

16.
A physically based analytic model for the threshold voltage V/sub t/ of long-channel strained-Si--Si/sub 1-x/Ge/sub x/ n-MOSFETs is presented and confirmed using numerical simulations for a wide range of channel doping concentration, gate-oxide thicknesses, and strained-Si layer thicknesses. The threshold voltage is sensitive to both the electron affinity and bandgap of the strained-Si cap material and the relaxed-Si/sub 1-x/Ge/sub x/ substrate. It is shown that the threshold voltage difference between strained- and unstrained-Si devices increases with channel doping, but that the increase is mitigated by gate oxide thickness reduction. Strained Si devices with constant, high channel doping have a threshold voltage difference that is sensitive to Si cap thickness, for thicknesses below the equilibrium critical thickness for strain relaxation.  相似文献   

17.
This letter presents a simple low-temperature process to fabricate Schottky-barrier (SB) MOSFETs that integrates a midgap metallic gate (tungsten). The device architecture is based on a thin (10 nm) and lowly doped silicon-on-insulator film that provides a threshold voltage of -0.3 V independent on the depletion charge and therefore not sensitive to variations in film thickness and doping. A gate encapsulation technique using an SiO/sub 2/-like hydrogen silsesquioxane capping layer features 15-nm-wide spacers and ensures the compatibility with the PtSi self-aligned silicide process. Long-channel devices present an ideal subthreshold swing of 60 mV/dec, over six decades of I/sub on//I/sub off/ without any sign of sublinear upward bending of the I/sub DS/--V/sub DS/ curves at low drain voltage.  相似文献   

18.
We introduce a strained‐SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si‐cap layers in n‐channel and p‐channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high‐electron‐mobility Si surface channel in nMOSFETs and a compressively strained high‐hole‐mobility Si0.8Ge0.2 buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate‐leakage levels. Unlike the conventional strained‐Si CMOS employing a relatively thick (typically > 2 µm) SixGe1‐x relaxed buffer layer, the strained‐SiGe CMOS with a very thin (20 nm) Si0.8Ge0.2 layer in this study showed a negligible self‐heating problem. Consequently, the proposed strained‐SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.  相似文献   

19.
We fabricated poly-Si thin-film transistors at 150/spl deg/C using inductively coupled plasma (ICP) chemical vapor deposition (CVD) and excimer laser annealing (ELA). An Si film deposited by ICP-CVD was recrystallized using ELA, and a poly-Si film with large grains exceeding 5000 /spl Aring/ in diameter was fabricated. An SiO/sub 2/ film with a high breakdown field was deposited by ICP-CVD. A high mobility exceeding 100 cm/sup 2//Vs and a low subthreshold swing of 0.76 V/dec were successfully achieved.  相似文献   

20.
An impact-ionization MOS (I-MOS) transistor with an elevated impact-ionization region (I-region) and excellent subthreshold swing of 3.2 mV/dec at room temperature is demonstrated. An elevated Si0.75 Ge0.25 region is integrated and employed to engineer the bandgap and impact-ionization rate in the I-region. Compared to a device with a Si I-region, an I-MOS device with a Si0.75Ge 0.25 I-region shows significantly enhanced performance due to the smaller bandgap of the I-region and the enhanced impact-ionization rate. For the I-MOS device with a Si0.75Ge0.25 I-region, the breakdown voltage is also reduced, and a significant drive current enhancement is achieved at VG-VT=1 V and a gate length of 80 nm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号