首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N–I co-doped TiO2 nanoparticles were prepared by hydrolysis method, using ammonia and iodic acid as the doping sources and Ti(OBu)4 as the titanium source. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS). XRD spectra show that N–I–TiO2 samples calcined at 673 K for 3 h are of anatase structure. XPS analysis of N–I–TiO2samples indicates that some N atoms replace O atoms in TiO2 lattice, and I exist in I7+, I and I5+ chemical states in the samples. UV–vis DRS results reveal that N–I–TiO2 had significant optical absorption in the region of 400–600 nm. The photocatalytic activity of catalysts was evaluated by monitoring the photocatalytic degradation of methyl orange (MO). Compared with P25 and mono-doped TiO2, N–I–TiO2 powder shows higher photocatalytic activity under both visible-light (λ > 420 nm) and UV–vis light irradiation. Furthermore, N–I–TiO2 also displays higher COD removal rate under UV–vis light irradiation.  相似文献   

2.
J.L. Cui  H.F. Xue  W.J. Xiu 《Materials Letters》2006,60(29-30):3669-3672
The p-type pseudo-binary AgxBi0.5Sb1.5−xTe3 (x = 0.05–0.4) alloys were prepared by cold pressing. The thermal conductivities (κ) were calculated from the values of heat capacities, densities and thermal diffusivities measured, and range approximately from 0.66 to 0.56 (W K− 1 m− 1) for the AgxBi0.5Sb1.5−xTe3 alloy with molar fraction x being 0.4. Combining with the electrical properties obtained in the previous study, the maximum dimensionless figure of merit ZT of 1.1 was obtained at the temperature of 558 K.  相似文献   

3.
A series of cathode materials for lithium ion batteries with the formula LiNi0.8−xCo0.2CexO2 (0 ≤ x ≤ 0.03) were synthesized by sol–gel method using citric acid as a chelating agent. The effects of cerium substitution on the structural, electrochemical and thermal properties of the cathode materials are investigated through X-ray diffraction (XRD), charge–discharge cycling, cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS) experiments and differential scanning calorimetry (DSC). Results show that the Ce substitution made the layered structure of materials more regular and less cation-ion mixing. An effective improved cycling performance is observed for cerium-doped cathode materials, which is interpreted to a significant suppression of phase transitions and charge-transfer impedance increasing during cycling. The thermal stability of cerium-doped materials is also improved, which can be attributed to its lower oxidation ability and enhanced structural stability at delithiated state.  相似文献   

4.
Alternating current susceptibility has been studied for polycrystalline Zn1 – x Mn x O. Stoichiometric samples demonstrate Curie–Weiss behavior, which indicates mostly antiferromagnetic interactions. Magnetic susceptibility can be described by a diluted Heisenberg magnet model developed for semimagnetic semiconductors. High-pressure oxygen annealing induces spin-glass like behavior in Zn1 – x Mn x O by precipitation of ZnMnO3 in the paramagnetic matrix.  相似文献   

5.
The thermodynamic and structural properties of compound semiconductor alloys have been generally modelled using either the Valence Force Field model or the Tersoff potential model. This work compares the properties, such as lattice constant and bond length, of the InxGa1−xAs alloy as predicted by Monte Carlo simulations in the semigrand isothermal isobaric ensemble using both the potential models, with experimental data. The lattice constants are expected to follow the Vegard’s law at any given temperature. Valence Force Field model predicts bond length data which follows the experimentally determined values at 300 K; whereas the Tersoff model forecasts that the virtual crystal approximation will be followed. The VFF model, with its experimentally determined parameters, is found to be better for modelling the alloy at room temperature. The Tersoff model, with its fitted parameters, on the other hand predicts the effect of temperature on the microscopic structure of the alloy better. The parameters of the Tersoff potential characterizing the In–Ga interactions can be further improved to predict bond lengths more accurately.  相似文献   

6.
Li1.2+x[Ni0.25Mn0.75]0.8−xO2 (0 ≤ x ≤ 4/55) was prepared by a new simple microwave heating method and the effect of extra Li+ content on electrochemistry of Li1.2Ni0.2Mn0.6O2 (x = 0) was firstly revealed. X-ray diffraction identified that they had layered α-NaFeO2 structure (space group R-3m). Linear variation of lattice constant as a function of x value supported the formation of solid solution, that is, extra Li+ is possibly incorporated in structure of layered Li1.2Ni0.2Mn0.6O2 (x = 0), accompanying oxidization of Ni2+ to Ni3+ to form Li1.2+x[Ni0.25Mn0.75]0.8−xO2 (0 ≤ x ≤ 4/55). This was confirmed by X-ray photoelectron spectroscopy that Ni3+ appeared and increased in content with increasing x value. Charge–discharge tests showed that Li1.2+x[Ni0.25Mn0.75]0.8−xO2 (0 ≤ x ≤ 4/55) truly displayed different electrochemical properties (different initial charge–discharge plots, capacities and cycleability). Li1.2Ni0.2Mn0.6O2 (x = 0) in this work delivered the highest discharge capacity of 219 mAh g−1 between 4.8 and 2.0 V. Increasing Li content (x value in Li1.2+x[Ni0.25Mn0.75]0.8−xO2) reduced charge–discharge capacities, but significantly enhancing cycleability.  相似文献   

7.
Recent theoretical calculations have suggested the coupling of electrons to high-energy oxygen phonons as an explanation of superconductivity in the Ba1–x K x BiO3–y system. We have synthesized high-quality single crystals of the material and have examined the behaviors of critical field and critical current parameters as a function of changes in the oxygen content and in the Ba/K ratio. We have determined, via positron lifetime spectroscopy and singlecrystal X-ray measurements, that the oxygen stoichiometry in this system can be varied without significant impact on the metal atom sublattice. These results facilitate an investigation of the dependence of critical parameters on dopant and defect levels in this system.  相似文献   

8.
The Ru-1232 compounds have been synthesized in the (Ru1–xNb x )Sr2(GdCe1.8Sr0.2)Cu2O z system, and effects of Nb substitution for Ru on superconductivity and ferromagnetism of the Ru-1232 compounds have been investigated. First, X-ray powder diffraction study shows that nearly the single 1232 phase samples can be obtained in the x composition range from 0.0 to 0.3. Then, from the electrical resistivity study, it is found that each of the samples shows resistivity dropping phenomenon at two temperatures of T c l and T c h, which originates from superconductivity of the Ru-1232 phase and the Ru-1222 one, respectively. Both of the starting temperatures are lowering with increasing Nb content x. Lastly, from the magnetic susceptibility study, it is found that superconducting transition temperature T c is 20 K for the Ru-1232 sample with x = 0.0 and the ferromagnetic transition temperature T m is about 90 K. This study also shows that both of the values of T c and T m become low with increasing x from 0.0 to 0.3.  相似文献   

9.
Ba1 – x K x BiO3 (BKBO) samples with 0.35 < x < 1 were synthesized by the high pressure and high temperature technique. XRD analysis showed that the BKBO samples were single phase for the whole range of the potassium doping concentration. The change of superconducting transition temperature, T c, as well as lattice parameters have been investigated upon doping concentration. As the K doping concentration (x) increases from x = 0.37, T c decreases from 30.4 K to almost zero at x = 0.74. However, in some BKBO samples without including any barium in the starting composition (x = 1), which is denoted as KBO samples, superconductivity is observed with T c as high as 9 K with partial substitutions of Bi at the K site. Depending on the synthesis condition of the KBO samples, T c and lattice parameters were different from sample to sample. Compared with other superconducting bismuthates, the evolution of T c by potassium doping in the cubic BKBO system is discussed in terms of its electronic band structure.  相似文献   

10.
We have fabricated and measured a high-capacity superconducting current lead composed of a Y1Ba2Cu3O7–x cylinder, 20 cm long and 0.9 cm2 cross section. A steady-state, d.c., critical current of 225 A at a temperature of 77 K was measured in this sample, using a voltage criterion of 2×10–7 V/cm (p = 8×10–10 ohm-cm). This current was limited by the currentinduced, self magnetic field. To our knowledge this is the largest d.c. critical current so far reported in a Y1Ba2Cu3O7–x sample and demonstrates the possibility of using hightemperature superconducting HTS materials for current leads to low-temperature superconducting LTS magnets or in power distribution systems.  相似文献   

11.
Cd–Te–In–O thin films are grown by pulsed laser deposition using a composite target of CdTe powder embedded in an indium matrix. Oxygen pressures range from 2.00 to 6.67 Pa at a substrate temperature of 420 °C. The structure, optical transmission and sheet resistance of the films are measured. Substitutional compounds with In2 − 2x(Cd,Te)2xO3 stoichiometry are found at high oxygen pressures. A ternary phase diagram of the CdO–In2O3–TeO2 system shows the relationship between the structure and the stoichiometry of the films. To evaluate film performance, a figure of merit is proposed based on the relationship between the integral photonic flux and the sheet resistance. The best figure of merit values corresponds to a sample prepared at 3.8 Pa O2 that consists of (In2O3)0.3(CdTe2O5)0.7 and exhibits an optical band gap of 3.0 eV. This sample is a suitable substrate for electrodeposition due to its good electrochemical stability.  相似文献   

12.
The goal of this paper is to undertake a detailed first principle calculation of the structural, electronic and optical properties of Sn1−xSbxO2. The results show that the stability of Sn1−xSbxO2 in the full range of Sb content points to the probability of a continuous solid solution, where the increasing Sb content leads to volume expansion with different variation trends in the lattice constants. The increase of Sb concentration in the semiconductor–metal–semimetal transition occurs in consonance with the corresponding changes in its structural, electronic and optical properties. Two competing mechanisms play essential roles in this transition, namely; the many body effect and the atom disorder. Our calculations concur with previous X-ray diffraction, sheet resistance, resistivity and optical parameters detections. The studies present a practical way of tailoring the physical behaviors of Sn1−xSbxO2 through the alloying technique.  相似文献   

13.
The gap and the renormalization functions of Ba1–x K x BiO have been numerically analyzed by means of the simplified equations of the generalized Hartree–Fock (GHF) theory. Measured functions and parameters have been used as inputs to the GHF integral equations, and all the relevant functions have been iterated self-consistently over the large energy range of 9 eV. The results show a reasonably large gap function which does not reverse its sign below 2 eV, despite static Coulomb repulsion and despite the low density of states at the Fermi level. It is also shown that these results are inconsistent with the conventional Eliashberg equations.  相似文献   

14.
We studied the YBa2Cu3O7 – x bulk superconductor doped with BaZrO3 up to 50 wt.%, obtained by solid-state reaction powder technology. From DC magnetization loops and low frequency AC susceptibility measurements we determined the influence of the BaZrO3 doping level on the critical temperature, critical current density, field for full penetration, and intergrain lower critical field. The results show that even high content of BaZrO3 does not lead to degradation of the superconducting properties of bulk YBa2Cu3O7 – x .  相似文献   

15.
A novel In2S3/TiO2 composite with visible-light photocatalytic activity was prepared by a chemical precipitation method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope and UV–vis diffuse reflectance spectroscopy. Under both UV- and visible-light irradiation, the In2S3/TiO2 composite shows good photocatalytic activity to degrade methyl orange, ascribed to the absorption of visible light by In2S3 sensitizer and enhanced separation of photoinduced electron–hole pairs in the composite semiconductors.  相似文献   

16.
A large family of Sn2yPb2(1−y)P2S6xSe6(1−x) semiconductor-ferroelectric crystals were obtained by the Bridgman technique. The photoluminescence properties of the Sn2yPb2(1−y)P2S6xSe6(1−x) family crystals strongly depend on their chemical composition, excitation energy and temperature. The influence of the Pb → Sn and S → Se isovalent substitutions on the luminescence properties of a crystal with the Sn2P2Se6 basic composition was investigated. A broad emission band observed in the Sn2P2Se6 crystal with a maximum roughly at 600 nm (at T = 8.6 K) was assigned to a band-to-band electron-hole recombination, whereas broad emission bands, peaked near 785 nm (at T = 8.6 K) and 1025 nm (at T = 44 K) were assigned to an electron-hole recombination from defect levels localised within the bandgap. Possible types of recombination defect centres and specific mechanisms of luminescence in the Sn2P2Se6 semiconductor-ferroelectric crystals were considered and discussed on the basis of the obtained results and the referenced data.  相似文献   

17.
Zn1−xCdxO (x=0.2, 0.4) alloyed crystal thin films have been deposited on Si(1 1 1) substrates at different temperatures by using dc reactive magnetron sputtering technique. The Zn1−xCdxO films are of highly (0 0 2)-preferred orientation possessing the hexagonal wurtzite structure of pure ZnO. At 450 °C, the films have better crystal quality and photoluminescent characteristics. For the films with x=0.2 and 0.4, the corresponding near-band-edge (NBE) energies are 3.10 and 3.03 eV, respectively, both have red-shifts compared with that of ZnO (3.30 eV). For the substrate temperatures lower or higher than 450 °C, the other NBE emission peak appears, the X-ray diffraction intensity of (0 0 2) peak decreases and the related FWHM increases. With the Cd addition up to x=0.4 both the XRD and PL intensity of the Zn1−xCdxO films decrease sharply in comparison with x=0.2.  相似文献   

18.
Yttria partially stabilized zirconia (Y-PSZ) and Co1−xO powders in 4:1 molar ratio were sintered and then annealed at 1300 and 1600°C to investigate the orientation change of Co1−xO particles within Y-PSZ grains. Transmission electron microscopic observations indicated the Co1−xO particles remained nonepitaxy in Y-PSZ grains after annealing at 1300°C for 300 h. When fired at 1600°C for 1–100 h, submicro-sized Co1−xO particles (denoted as C) reached parallel epitaxy relationship, i.e. [100]C//[100]Z, [010]C//[010]Z and another relationship, i.e. [111]C//[100]Z, //[011]Z with respect to the host zirconia grain (denoted as Z) nearly free of tetragonal precipitates. On the other hand, larger intragranular Co1−xO particles (>1 μm in diameter) failed to reach epitaxial orientations even subject to prolonged annealing (100 h) at 1600°C. The temperature and size dependence of orientation change of the intragranular particle is in accordance with theoretical consideration of Brownian type rotation of the particle above a critical temperature for anchorage release at interface.  相似文献   

19.
High-Tc superconductors with light rare earth (LRE) elements instead of Y exhibit nanoscale stripe structures on the surface as observed by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) scans. Within the GdBa2Cu3Ox (GdBCO) system exhibiting relatively high critical current densities, nanoclusters arranged in a stripe-like fashion are observed in undoped material, while adding of nanoparticles (ZnO2, ZrO2) leads to the formation of nanostripes as observed in other LRE superconductors. The nanostripes in doped GdBCO exhibit periodicties between 20 and 50 nm and corresponding step heights of 0.3–0.8 nm. Using polarized light microscopy and electron backscatter diffraction (EBSD) analysis, we determined the direction of the nanostripes with respect to the known twin structure.  相似文献   

20.
S.Y. Zheng  G.S. Jiang  J.R. Su  C.F. Zhu   《Materials Letters》2006,60(29-30):3871-3873
A series of CuCr1 − xNixO2 (0 ≤ x ≤ 0.06) polycrystalline samples was prepared. The electrical conductivity was measured in the temperature range of 160–300 K. It was found that the electrical conductivity (σ) increases rapidly with the doping of Ni2+ ions. At room temperature, the σ is 0.047 S cm− 1 for the sample with x = 0.06, which is two orders of magnitude larger than that of the CuCrO2 sample (9.49E− 4 S cm− 1). The Seebeck coefficients are positive for all samples, which indicate p-type conducting of the samples. The experimental results imply that it is possible to get higher electrical conductivity p-type transparent conducting oxides (TCO) from CuMO2 by doping with divalent ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号