首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Uptake of trivalent chromium ions from aqueous solutions using kaolinite   总被引:1,自引:0,他引:1  
The sorption of Cr(III) from aqueous solutions on kaolinite has been studied by a batch technique. We have investigated how solution pH, ionic strength and temperature affect this process. The adsorbed amount of chromium ions on kaolinite has increased with increasing pH and temperature when it has decreased with increasing ionic strength. The sorption of Cr(III) on kaolinite is endothermic process in nature. Sorption data have been interpreted in terms of Freundlich and Langmuir equations. The adsorption isotherm was measured experimentally at different conditions, and the experimental data were correlated reasonably well by the adsorption isotherm of the Langmuir, and the isotherm parameters (q(m) and K) have been calculated as well. The enthalpy change for chromium adsorption has been estimated as 7.0 kJ mol(-1). The order of enthalpy of adsorption corresponds to a physical reaction.  相似文献   

2.
Local bentonite and expanded perlite (Morocco) have been characterised and used for the removal of trivalent chromium from aqueous solutions. The kinetic study had showed that the uptake of Cr(III) by bentonite is very rapid compared to expanded perlite. To calculate the sorption capacities of the two sorbents, at different pH, the experimental data points have been fitted to the Freundlich and Langmuir models, respectively, for bentonite and expanded perlite. For both sorbents the sorption capacity increases with increasing the pH of the suspensions. The removal efficiency has been calculated for both sorbents resulting that bentonite (96% of Cr(III) was removed) is more effective in removing trivalent chromium from aqueous solution than expanded perlite (40% of Cr(III) was removed). In the absence of Cr(III) ions, both bentonite and expanded perlite samples yield negative zeta potential in the pH range of 2-11. The changes of expanded perlite charge, from negative to positive, observed after contact with trivalent chromium(III) solutions was related to Cr(III) sorption on the surface of the solid. Thus, it was concluded that surface complexation plays an important role in the sorption of Cr(III) species on expanded perlite. In the case of bentonite, cation-exchange is the predominate mechanism for sorption of trivalent chromium ions, wherefore no net changes of zeta potential was observed after Cr(III) sorption. X-ray photoelectron spectroscopy measurements, at different pH values, were also made to corroborate the zeta potential results.  相似文献   

3.
Dolochar, a waste material generated in sponge iron industry, is processed and put to test as an adsorbent for removal of Cd(II) and Cr(VI) ions from aqueous solutions. The dolochar samples were characterised to determine the different phases and their distribution by reflection microscopy. The analysis indicated that the sample consists of metallic iron, fused carbon, and Ca-Mg bearing phases (Ca-Mg-silicate-oxide) along with lots of voids and pores. The fixed carbon (FC) content of the material is 13.8% with a Langmuir surface area of 81.6 m2/g and micropore area of 34.1 m2/g. Batch adsorption experiments have been conducted to study the sorption behaviour of Cd(II) and Cr(VI) ions on dolochar as a function of particle size, contact time, adsorbent dosages, pH and temperature. It is observed that higher pH and temperature enhances sorption of Cd(II) ions. In contrast, the adsorption for Cr(VI) is found to be better in acidic pH in comparison to alkaline media. The equilibrium adsorption isotherm data are tested by applying both Langmuir and Freundlich isotherm models. It is observed that Langmuir isotherm model fitted better compared to the Freundlich model indicating monolayer adsorption. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° indicate the effectiveness of dolochar to remove Cd(II) and Cr(VI) ions from aqueous solution. The kinetics of adsorption is found to better fit to pseudo second order reaction.  相似文献   

4.
This study deals with the removal of chromium species from aqueous dilute solutions using polymer-enhanced ultrafiltration (PEUF) process. Three water soluble polymers, namely chitosan, polyethyleneimine (PEI) and pectin were selected for this study. The ultrafiltration studies were carried out using a laboratory scale ultrafiltration system equipped with 500,000 MWCO polysulfone hollow fiber membrane. The effects of pH and polymer composition on rejection coefficient and permeate flux at constant pressure have been investigated. For Cr(III), high rejections approaching 100% were obtained at pH higher than 7 for the three tested polymers. With chitosan and pectin, Cr(VI) retention showed a slight increase with solution pH and did not exceed a value of 50%. An interesting result was obtained with PEI. The retention of Cr(VI) approached 100% at low pH and decreased when the pH was increased. This behavior is opposite to what one can expect in the polymer-enhanced ultrafiltration of heavy metals. Furthermore, the concentration of polymer was found to have little effect on rejection. Permeate flux remained almost constant around 25% of pure water flux.  相似文献   

5.
DNA has a unique character that allows it to combine with various chemical substrates at the molecular level, and the DNA binding with chemical pollutants can cause serious damage to the organism. The purpose of this research was to apply the strong bonding character of DNA for the removal of mercury ions. In this research, we used DNA condensation promoted by the action of DNA condensing agents, such as cetyltrimethylammonium bromide and a commercially available combination flocculant made of zeolite, to precipitate out the DNA bound with mercury ion in an aqueous solution. When solutions of mercury at 0.02–100 ppm (parts per million) concentrations at a pH range of 2–11 were treated with double-stranded DNA followed by the condensing agent, more than 95% of the mercury ions could be removed after simple filtration or sedimentation.  相似文献   

6.
Mg(OH)(2) was identified as a component in the magnesia cement being adsorbent for Cr(VI). Modified magnesia cement was prepared by the addition of ferric chloride and humic acid. The equilibrium adsorption of Cr(VI) on magnesia cement adsorbents (MF5-1) and (MF5-2) was investigated as a function of contact time, adsorbent weight, solute concentration and temperature. Tests of different isotherms have shown that the adsorption data fit the Langmiur and Freundlich isotherms at 25+/-1 degrees C. The nature of the diffusion process responsible for adsorption of Cr(VI) on (MF5-1) and (MF5-2) adsorbents was discussed. The kinetics and mechanism of diffusion of Cr(VI) into (MF5-1) and (MF5-2) adsorbents from aqueous solution have been studied as a function of Cr(VI) concentrations and reaction temperatures. The adsorption of Cr(VI) on the MF5-1 and MF5-2 adsorbents follows first-order reversible kinetics. The forward and backward constants, k(1) and k(2) have been calculated at different temperatures between 10 and 50 degrees C. The heat of activation of the adsorption, DeltaH(*) and DeltaS(*) were calculated for Cr(VI) at 25 degrees C. The values of DeltaH(*) were found 18.1 and 10.7 kJ mol(-1) for MF5-1 and MF5-2, respectively, while entropy change, DeltaS(*), were found -106.8 and -118.6 J mol(-1)K(-1) for MF5-1 and MF5-2, respectively. The study showed that pore diffusion is the rate-determining step in the adsorption of Cr(VI) ions for MF5-1 and MF5-2. MF5-2 was found more efficient for Cr(VI) adsorption than MF5-1. Also Cr(VI) can be adsorbed on MF5-2, whereas Cr(III) cannot. So, the competitive adsorption of multi-metals onto the MF5-2 adsorbent was studied. The studies showed that this adsorbent can be used as an efficient adsorbent material for the removal of Cr(VI) from water and nuclear power plant coolant water.  相似文献   

7.
Three hydroxyapatite(HA)-based materials have been investigated with respect to their potential for removing heavy metal ions from aqueous solutions. The materials have been evaluated as both loose powders and in the form of ceramic foams. The results have shown that all three grades of HA were found to be capable of removing a number of different ionic species although the more impure grades generally yielded the best performance. It is believed that the increased impurity levels resulted in increased numbers of lattice defects which were ideal adsorption/exchange sites. 100% removal could be achieved for some ions under the correct experimental conditions. For the ceramic foam filters, the optimum filtration parameters were found to be a high surface area, long filtration times, a low pH and a high filtrate temperature. Ion adsorption was positively detected as a mechanism of ion removal. Ion exchange was not observed but could not be completely ruled out.  相似文献   

8.
The carapace of the crab (Cancer pagurus), a waste material disposed of by the seafood industry, has recently been shown to have potential as a biosorbent for the removal of metals from aqueous media. Crab carapace in the particle size ranges 0.25-0.8mm and 0.8-1.5mm were used to investigate the effects of agitation speed, contact time, metal concentration and initial pH on the removal of Zn(2+). In sequential-batch process Zn(2+) uptakes of 105.6 and 67.6 mg/g were recorded for 0.25-0.8 mm and 0.8-1.5 mm particles, respectively, while values of 141.3 and 76.9 mg/g were recorded in fixed-bed column studies. Binary-metal studies showed that the presence of Cu(2+) or Pb(2+) significantly suppressed Zn(2+) uptake. This study confirms that crab carapace may be considered a viable and cost-effective alternative to commercial activated carbon or ion-exchange resins for the removal of metals from aqueous media.  相似文献   

9.
A sulfate trivalent chromium bath is described which contains chromium(III) salt, sodium sulfate, aluminum sulfate, boric acid, formic acid, carbamide and surfactant. The bath is operated using either titanium-manganese dioxide anodes or platinized titanium anodes without separation of anodic and cathodic compartments. Effect of bath composition and electrolysis conditions on current efficiency of chromium electrodeposition was studied. At optimal bath composition and electrolysis conditions, the deposition rate does not practically change during electrolysis time; it is close to 0.8 μm min−1. The nanocrystalline coatings with a thickness of several tens of micrometers are bright and smooth. The value of Cr-coatings hardness does not substantially differ from that observed in case of Cr(VI)-based baths. The possibility of continuous service of the proposed trivalent chromium bath was confirmed by means of a durational electroplating test (~ 2 months).  相似文献   

10.
Mg-Fe–hexacyanoferrate (MgFeCF) and Ni-Fe–hexacyanoferrate (NiFeCF) were prepared and characterized using X-ray diffraction, Fourier-transform infrared spectroscopy spectra, and thermal analysis. The isotherm study showed that the sorption data fit with the Langmuir and Freundlich isotherms at 25?±?1°C. The sorption capacities of the prepared sorbents for MgFeCF and NiFeCF were found to be 154.32 and 180.83?mg?g?1, respectively. The adsorption of cesium by MgFeCF and NiFeCF is exothermic and spontaneous processes. Kinetic study indicated that the adsorption of cesium on MgFeCF and NiFeCF fits with the pseudo-second-order kinetic model. Desorption tests indicated that the sorption process is relatively stable. The new sorbents are promising efficient materials for cesium removal from aqueous solutions and sea water. The possibility of reusing the sorbents after stripping the metal ions was studied using 0.5?M HCl, and its efficiency for cesium removal was found to be 98% after five runs.  相似文献   

11.
Adsorption isotherms of chromium ions in aqueous solution have been experimentally measured on a granular activated carbon (GAC) and on a char of South African coal (CSAC). Experimental results show that the adsorption capacity for the GAC strongly depends on solution pH and salinity, with maximum values around 7mg/g at neutral pH and low salinity levels. On the contrary, the CSAC shows a smaller adsorption capacity, near 0.3mg/g, which slightly decreases by increasing pH and salinity levels. Chromium adsorption mainly depends on the availability of chromium ions in solution and on the occurrence of redox reactions between the surface groups and the Cr(VI) which lead to the formation of Cr(III). The reduction of Cr(VI) and the following sorption of Cr(III) cations appears as the leading mechanism for chromium uptake on the CSAC. A similar behaviour can be observed for the GAC at pH below 3. On the contrary, at pH>7, the multicomponent competitive adsorption of Cr(VI), OH(-) and Cl(-) has to be considered.  相似文献   

12.
The capability of 14 zeolites synthesized from different fly ashes (ZFAs) to sequestrate Cr(III) from aqueous solutions was investigated in a batch mode. The influence of pH on the sorption of Cr(III) was examined. ZFAs had a much greater ability than fly ash to remove Cr(III), due to the high cation exchange capacity (CEC) and the high acid neutralizing capacity (ANC) of ZFAs. The mechanism of Cr(III) removal by ZFAs involved ion exchange and precipitation. A high-calcium content in both the fly ashes and ZFAs resulted in a high ANC value and, as a result, a high immobilization capacity for Cr(III). The pH strongly influenced Cr(III) removal by ZFAs. Inside the solubility range, removal of chromium increased with increasing pH. Hydroxysodalite made from a high-calcium fly ash had a higher sorptive capacity for Cr(III) than the NaP1 zeolite from medium- and low-calcium fly ashes. On the other hand, at pH values above the solubility range, the efficiency of chromium removal by the ZFAs approached 100% due to the precipitation of Cr(OH)3 on the sorbent surfaces. It is concluded that ZFAs and high-calcium fly ashes may be promising materials for the purification of Cr(III) from water/wastewater.  相似文献   

13.
Adsorption of chromium from aqueous solutions by maple sawdust   总被引:26,自引:0,他引:26  
This paper presents the data for the effect of adsorbent dose, initial sorbate concentration, contact time, and pH on the adsorption of chromium(VI) on maple sawdust. Batch adsorption studies have been carried out. An empirical relationship has been obtained to predict the percentage chromium(VI) removal at any time for known values of sorbent and initial sorbate concentration. Under observed test conditions, the equilibrium adsorption data fits the linear Langmuir and Freundlich isotherms. The experimental result inferred that chelation ion exchange is one of the major adsorption mechanisms for binding metal ions to the maple sawdust.  相似文献   

14.
Chromium as Cr(VI) is a industrially produced pollutant. Hexavalent chromium can be reduced to the trivalent state using various reductive agents or it can be removed from solution by surface-active adsorbents. In this study, both of these methods were evaluated using soya cake. A high efficiency for reduction of Cr(VI) to trivalent chromium was observed at pH < 1. Increasing the temperature, also increased the yield. Experimentally, the optimum time and soya cake mass were 5h and 0.7 g, respectively. In the second treatment method, a high efficiency for adsorption of chromium was also observed at pH < 1. The favorable temperature for adsorption was found to be 20 degrees C. Experimentally, the best time was 1h and with increasing soya cake mass up to 30 g, the adsorption efficiency was increased. Dissolution of LiCl in the experimental solutions, increased the efficiency of adsorption, however, this effect was not observed in the case of KCl. Langmuir isotherm constants, Q and b, for ground soybeans, were found to be 2.8 x 10(-4)mg/mg and 0.623, respectively. Freundlich isotherm constants, K(f) and n, were found to be 1.4 x 10(-4) and 4.99, respectively.  相似文献   

15.
The present study shows that the dithiocarbamate-modified starch (DTCS) is a commercially promising sorbent for the removal of anionic dyes from aqueous solutions. It is more effective than activated carbon for this purpose. At the appropriate solution pH of 4, kinetic studies indicate that the sorption of the dyes tends to follow pseudo-first-order equation. The sorption equilibrium is best described by the Langmuir-Freundlich isotherm model at 298 K. The capacities for individual dyes follow the sequence acid orange 7 > acid orange 10 > acid red 18 > acid black 1 > acid green 25, which is consistent with the inverse order of molecular size. The negative enthalpy change for the adsorption process confirms the exothermic nature of adsorption, and a free energy change confirms the spontaneity of the process. The FT-IR spectra and thermogravimetric analyses verify the sorption based on starch-NH(2)(+)CSSH?(-)O(3)S-dye electrostatic attraction. The DTCS can be regenerated from the dye loaded DTCS in a weak basic solution containing sodium sulfate.  相似文献   

16.
Lead removal from aqueous solutions by a Tunisian smectitic clay   总被引:2,自引:0,他引:2  
The adsorption of Pb(2+) ions onto Tunisian smectite-rich clay in aqueous solution was studied in a batch system. Four samples of clay (AYD, AYDh, AYDs, AYDc) were used. The raw AYD clay was sampled in the Coniacian-Early Campanian of Jebel A?doudi in El Hamma area (South of Tunisia). AYDh and AYDs corresponds to AYD activated by 2.5 mol/l hydrochloric acid and 2.5 mol/l sulphuric acid, respectively. AYDc corresponds to AYD calcined at different temperatures (100, 200, 300, 400, 500 and 600 degrees C). The raw AYD clay was characterized by X-ray diffraction, chemical analysis, infrared spectroscopy and coupled DTA-TGA. Specific surface area of all the clay samples was determined from nitrogen adsorption isotherms. Preliminary adsorption tests showed that sulphuric acid and hydrochloric acid activation of raw AYD clay enhanced its adsorption capacity for Pb(2+) ions. However, the uptake of Pb(2+) by AYDs was very high compared to that by AYDh. This fact was attributed to the greater solubility of clay minerals in sulphuric acid compared to hydrochloric acid. Thermic activation of AYD clay reduced the Pb(2+) uptake as soon as calcination temperature reaches 200 degrees C. All these preliminary results were well correlated to the variation of the specific surface area of the clay samples. The ability of AYDs sample to remove Pb(2+) from aqueous solutions has been studied at different operating conditions: contact time, adsorbent amount, metal ion concentration and pH. Kinetic experiments showed that the sorption of lead ions on AYDs was very fast and the equilibrium was practically reached after only 20 min. The results revealed also that the adsorption of lead increases with an increase in the solution pH from 1 to 4.5 and then decreases, slightly between pH 4.5 and 6, and rapidly at pH 6.5 due to the precipitation of some Pb(2+) ions. The equilibrium data were analysed using Langmuir isotherm model. The maximum adsorption capacity (Q(0)) increased from 25 to 25.44 mg/g with increasing temperature from 25 to 40 degrees C. Comparative study between sulphuric acid activated clay (AYDs) and powder activated carbon (PAC) for the adsorption of lead was also conducted. The results showed that sulphuric acid activated clay is more efficient than PAC.  相似文献   

17.
Removal of both nutrients ammonium and phosphorus by natural zeolite has been studied in lab scale by using a mechanically stirred batch system (1000 ml). Zeolite, a mean particle size of 13 μm, was used as an adsorbent for the removal of ammonium and then as a seed material for the precipitation of calcium phosphate. A relationship was established between the uptake of ammonium by zeolite and the ratio of initial ammonium concentration to zeolite dosage. Ammonium uptake of zeolite was almost completed within initial 5 min of adsorption period. There is no pronounced effect of zeolite and ammonium, neither positive nor negative on the amount of calcium phosphate precipitation. The extent of the precipitation of phosphate increased with rising pH. It was also observed that when the system was allowed to relax at constant pH (i.e. under relatively low super saturations), a certain lag time was noted to elapse at the onset of the precipitation. At the pH 7.2, the amount of initial fast precipitation within 5 min and total precipitation within 120 min were around 34% and 93%, respectively. Precipitation of calcium phosphate on to ammonium-loaded zeolite was achieved at low super saturations (<pH 7.5) through secondary nucleation and crystal growth, leading to an increase in particle size.  相似文献   

18.
This study compares the abilities of four low-cost materials: peels of peas, broad bean, and medlar, respectively and fig leaves, to remove cadmium from aqueous solutions. Kinetic data and equilibrium sorption isotherms were measured in batch conditions. Kinetics of cadmium sorption was contact time, initial cadmium concentration and sorbent type dependent. The results also showed that the kinetics of cadmium sorption were described by a pseudo second-order rate model. The cadmium uptake of these low-cost materials was quantitatively evaluated using sorption isotherms. Results indicated that Langmuir model gave an acceptable fit to the experimental data. A high cadmium sorption was observed by these materials. The broad bean peel was the most effective to remove cadmium ions with a maximum sorption capacity about 147.71 mg/g followed by peas peel (118.91 mg/g), fig leaves (103.09 mg/g), and medlar peel (98.14 mg/g).  相似文献   

19.
The objective of the present study was to investigate the adsorption of the heavy metals mercury(II) and chromium(VI), from aqueous solutions, onto Moroccan stevensite. A mineralogical and physicochemical characterization of natural stevensite was carried out. In order to improve the adsorption capacity of stevensite for Cr(VI), a preparation of stevensite was carried out. It consists in saturating the stevensite by ferrous iron Fe(II) and reducing the total Fe by Na(2)S(2)O(4). Then, the adsorption experiments were studied in batch reactors at 25+/-3 degrees C. The influence of the pH solution on the Cr(VI) and Hg(II) adsorption was studied in the pH range of 1.5-7.0. The optimum pH for the Cr(VI) adsorption is in the pH range of 2.0-5.0 while that of Hg(II) is at the pH values above 4.0. The adsorption kinetics were tested by a pseudo-second-order model. The adsorption rate of Hg(II) is 54.35 mmol kg(-1)min(-1) and that of Cr(VI) is 7.21 mmol kg(-1)min(-1). The adsorption equilibrium time for Hg(II) and Cr(VI) was reached within 2 and 12 h, respectively. The adsorption isotherms were described by the Dubinin-Radushkevich model. The maximal adsorption capacity for Cr(VI) increases from 13.7 (raw stevensite) to 48.86 mmol kg(-1) (modified stevensite) while that of Hg(II) decreases from 205.8 to 166.9 mmol kg(-1). The mechanism of Hg(II) and Cr(VI) adsorption was discussed.  相似文献   

20.
In this paper batch removal of hexavalent chromium from aqueous solutions by Ocimum americanum L. seed pods was investigated. The optimum pH and shaker speed were found to be 1.5 and 121 rpm. The equilibrium adsorption data fit well with Langmuir isotherm. The maximum chromium adsorption capacity determined from Langmuir isotherm was 83.33 mg/g dry weight of seed pods at pH 1.5 and shaker speed 121 rpm. The batch experiments were conducted to study the adsorption kinetics of chromium removal for the concentrations of 100 mg/L, 150 mg/L and 200mg/L chromium solutions. The adsorbent dosage was 8 g dry seed pods/L. The removal efficiency observed for all the three chromium concentrations was 100%. The equilibrium was achieved less than 120 min for all the three concentrations. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the chromium adsorption kinetics of O. americanum L. seed pods was well explained by second order kinetic model rather than first order model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号