首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this contribution, the effects of external resonant electric and magnetic fields on the tokamak edge plasma fluctuations have been investigated. For this purpose, the radial and poloidal electric fields and ion saturation current have been measured by two arrays of the Langmuir probes. An external resonant electric field was applied with the limiter biasing system. The biased electric voltage has been restricted to 0 < V bias  < +320 and it has been applied with the limiter that is fixed in the r/a = 0.9. Moreover, the power spectra of particle flux Γ r , Γ p , Reynolds stress, coherency between E p and I s have been calculated. Fourier-based techniques have been employed to analyze the frequency of the Reynolds stress and particle flux. The results show that after positive biasing application (V bias  = +200v), the Reynolds stress increases about 50 % while it doesn’t change remarkability after positive biasing with V bias  = +320v. The Reynolds stress power spectrum confirms these results. The effect of positive biasing on Γ r has been displayed a decrease about 60, 20 % by V bias  = +200v, V bias  = +320v respectively. Γ p and I s increase about 30 and 4 % in the present of biased (V bias  = +200v) while they don’t change remarkability in another voltage. The power spectrum of Γ r decreases about 15 and 10 % while the power spectrum of Γ p increases about 80 and 20 % after positive biasing (V bias  = +200v, V bias  = +320v). Consequently, a better confinement obtained for biased with V bias  = +200v. It means that, the magnitude of biased is important factor in modifying and control plasma turbulence. Also, results were compared with the effects of external resonant magnetic field.  相似文献   

2.
Measurement of plasma internal inductance is important in tokamak plasma experiments (plasma internal inductance relates to the plasma current profile). In this paper we present an experimental investigation of effects of Resonant Helical Field (RHF) on the plasma internal inductance in IR-T1 tokamak. For this purpose, four magnetic probes and also a diamagnetic loop with its compensation coil were constructed and installed on outer surface of the IR-T1 tokamak, and Shafranov parameter, poloidal Beta, and then the internal inductance determined. In order to investigate the effects of RHF on internal inductance, we measured it in presence and also in absence of different modes of the RHF (L = 2, L = 3, L = 2&3). Experimental results show that L = 3 mode can flat the plasma current and increase the plasma internal inductance.  相似文献   

3.
In this research hot limiter biasing effects on the Runaway discharges were investigated. First wall of the tokamak reactors can affects serious damage due to the high energy runaway electrons during a major disruption and therefore its life time can be reduced. Therefore, it is important to find methods to decrease runaway electron generation and their energy. Tokamak limiter biasing is one of the methods for controlling the radial electric field and can induce a transition to an improved confinement state. In this article generation of runaway electrons and the energy they can obtain will be investigated theoretically. Moreover, in order to apply radial biasing an emissive limiter biasing is utilized. The biased limiter can apply +380 V in the status of cold and hot to the plasma and result in the increase of negative bias current in hot status. In fact, in this experiment we try to decrease the generation of runaway electrons and their energy by using emissive limiter biasing inserted on the IR-T1 tokamak. The mean energy of these electrons was obtained by spectroscopy of hard X-ray. Also, the plasma current center shift was measured from the vertical field coil characteristics in presence of limiter biasing. The calculation is made focusing on the vertical field coil current and voltage changes due to a horizontal displacement of plasma column.  相似文献   

4.
E × B velocity shear effects on the plasma confinement were investigated in the IR-T1 tokamak. The investigations have been done at the presence of external applied electric and Resonant Helical magnetic Fields (RHF). In this work, experimental data have been measured by using two arrays of the Langmuir probes in both the radial and poloidal directions. A velocity shear stabilization mechanism has also been proposed to be responsible for an improvement in plasma confinement. The results show that Er × B drift velocity (VE×B) reduces about 90 % due to applied biasing and RHF at edge plasma. We have also observed that positive biasing and RHF lead to a significant decrease (>80 %) for radial turbulent transport (ΓE×B) at edge plasma. In this paper, the electrostatic Reynolds stress (Rs) and the shearing rate γE×B have been calculated. We have also compared the Rs and γE×B at presence of the biasing and RHF and without biasing and RHF. A good correlation between confinement modifications and Er × B velocity shear has been found suggesting that confinement enhancement originates at the edge plasma as a consequence of the formation of a particle transport barrier just inside the limiter.  相似文献   

5.
Plasma energy confinement time is one of the main parameters of tokamak plasma and Lawson criterion. In this paper we present an experimental method especially based on diamagnetic loop (toroidal flux loop) for measurement of this parameter in presence of resonance helical field (RHF) in IR-T1 tokamak. For this purpose a diamagnetic loop with its compensation coil constructed and installed on outer surface of the IR-T1. Also in this work we measured the plasma current and plasma voltage from the Rogowski coil and poloidal flux loop measurements. Measurement results of plasma energy confinement time with and without RHF (L = 2, L = 3, L = 2 & 3) show that the addition of a relatively small amount of RHF could be effective for improving the quality of tokamak plasma discharge by flatting the plasma current and increasing the energy confinement time.  相似文献   

6.
In this work, the turbulent transport in the edge plasma and Scrape-Off Layer (SOL) region of IR-T1 tokamak at the presence of biased limiter has been investigated and analyzed. The time and radial evolution of floating potential, electric field and turbulent transport have been measured by using two arrays of the Langmuir probes in both the radial and poloidal directions. The analyses have been done by the Fast Fourier Transport method and spectral features of them are obtained with the help of the standard Auto-Correlation technique and modified covariance power spectral density estimate. The probability distribution function and actual transfer function magnitude of the radial and poloidal turbulent transport (Γr and Γp) have been investigated and compared in the edge plasma and SOL region. Also the histogram of turbulent transport has been analyzed and compared in the edge and SOL at presence of positive limiter biasing. The results show that in the edge plasma poloidal turbulent transport (Γp) is about of 60 % more than SOL region whereas radial turbulent transport (Γr) is about of 40 % less. During the application of positive biasing, it was found that Γr in the IR-T1 reduces by about 80 % in the edge plasma and 45–50 % in the SOL. Increase of Γp is about of 50 % after applied positive biasing in the edge while it increases 70 % nearly, in the SOL. Consequently, the improvement in confinement can be obtained for positive limiter biasing.  相似文献   

7.
In this contribution we presented the first biasing experiments performed on the IR-T1 tokamak. For this purpose, a movable biasing system was designed, constructed, and installed, and then the positive voltage applied to an electrode inserted inside the tokamak limiter and the plasma current and also the plasma horizontal displacement in the absence and presence of the biased electrode based on the multipole moments and magnetic probes techniques were measured. Measurements result has shown a modification of plasma confinement by decreasing the plasma displacement.  相似文献   

8.
In this contribution we presented the first biasing experiments performed on the IR-T1 tokamak. For this purpose, a movable biasing system was designed, constructed, and installed, and then the positive voltage applied to an electrode inserted inside the tokamak limiter and the plasma current and also the plasma horizontal displacement in the absence and presence of the biased electrode based on the multipole moments and magnetic probes techniques were measured. Measurements result has shown a modification of plasma confinement by decreasing the plasma displacement.  相似文献   

9.
The first results of the movable electrode biasing experiments performed on the IR-T1 tokamak are presented. For this purpose, a movable electrode biasing system was designed, constructed, and installed on the IR-T1 tokamak, and then the positive voltage applied to an electrode inserted inside the tokamak limiter and the plasma current, poloidal and radial components of the magnetic fields, loop voltage, and diamagnetic flux in the absence and presence of the biased electrode were measured. Results compared and discussed.  相似文献   

10.
The plasma current in tokamak is under the influence of forces in such a way it tents toward the radial expansion. The forces resulting from external self-induced, internal inductance, thermal energy, and magnetic field fluctuations on the plasma column, cause radial expansion. To keep plasma in its position, the Lorentz force should be applied by vertical magnetic field to balance these forces. Control of the plasma position in the radial direction is very complicated. Poloidal beta, βθ, and the internal inductance parameter depend on plasma current where plasma current parameters themselves are not steady in tokamak. The experimental data of Damavand tokamak is used to compare radial displacement with theoretical prediction. Temporal variation of plasma current along with time variation of R and Z positions of the plasma column is studied. The vertical displacement event takes place because of the elongated cross section of plasma column. Theoretical and experimental results show reasonable agreement.  相似文献   

11.
Precise measurements of poloidal beta and internal inductance are essential for tokamak plasma experiments. In this paper we present an experimental investigation of effects of Resonant Helical Field (RHF) on the poloidal beta in IR-T1 tokamak. For this purpose, a diamagnetic loop with its compensation coil were constructed and installed on outer surface of the IR-T1 tokamak, and then poloidal beta measured. In order to investigate the effects of RHF on the poloidal beta, we measured it with and without introducing of different modes of the RHF (L = 2, L = 3, L = 2 & 3). Experimental results discussed.  相似文献   

12.
In this work we presented recent results on plasma displacement in IR-T1 Tokamak using modification in bias system. In this regard, a movable biasing system was designed and constructed. The positive voltage applied to an electrode inserted inside the tokamak limiter and the plasma current and also the plasma horizontal displacement in the absence and presence of the biased electrode based on the multipole moments and magnetic probes techniques were measured. Measurements result has shown a modification of plasma confinement by decreasing the plasma displacement.  相似文献   

13.
The avoidance of runaway electrons (REs) generated during plasma disruption is of great concern for the safe operation of tokamak devices. Experimental study on the suppression of runaway current by electrode biasing (EB) and limiter biasing (LB) has been performed on the J-TEXT tokamak, which could be an alternative way to suppress the runaway current. The experimental results show that the higher the voltage value, the smaller the runaway current in both EB and LB experiments. The runaway current can be completely suppressed at an electrode biased voltage of +450 V and a limiter biased voltage of +300 V. The comparison of the energy spectra during the runaway plateau phase shows that the maximum energy max (ERE) and radiation temperature THXR of hard x-rays (HXRs) are significantly reduced after the application of +200 V limiter biased voltage. The electric field generated by the biased voltage may be the key factor to suppress the runaway current, and the measured radial electric field increases obviously after the voltage is applied. This may result in an increase in the loss of REs to realize the suppression of runaway current.  相似文献   

14.
Precise determination of the poloidal Beta, internal inductance, plasma energy, plasma pressure, plasma temperature, plasma resistance, plasma effective atomic number, and plasma energy confinement time are essential for tokamak experiments. In this paper an experimental method especially based on the plasma diamagnetic effect for measurements of these parameters in IR-T1 tokamak are presented. For these purposes a diamagnetic loop with its compensation coil, and also an array of magnetic probes designed, constructed, and installed on outer surface of the IR-T1. Also in this work we measured the Shafranov parameter, plasma current, plasma voltage, and the plasma density by the magnetic probes, Rogowski coil, poloidal flux loop, and the Langmuir probe measurements, respectively.  相似文献   

15.
In this paper we present an experimental study of effects of Resonant Helical Field (RHF) on Shafranov parameter and Shafranov shift in IR-T1 tokamak. For this purpose a four magnetic pickup coils were designed, constructed, and installed on outer surface of the IR-T1 tokamak chamber, and then the Shafranov parameter and Shafranov shift obtained. On the other hand, the external RHF applied on tokamak plasma and its effects on results measured. Experimental results of measurements with and without RHF (L = 2, L = 3, L = 2 & 3) show that the addition of a relatively small amount of RHF especially L = 3 mode could be effective for improving the quality of tokamak plasma discharge by flatting the plasma current and reducing the Shafranov parameter and Shafranov shift.  相似文献   

16.
The high energy current of runaway electrons during a major disruption in tokamak reactors can cause serious damage to the first wall of the reactor and reduce its life time. Therefore, finding a method to minimize runaway electron is much needed. Resonant helical field (RHF) is one of the methods for controlling the magnetohydrodynamic (MHD) activity. This paper attempts to examine the effect of RHF on the generation of runaway electrons. Main parameters such as plasma current, loop voltage, emitted hard X-ray intensity, MHD oscillation, Hα radiation and MHD activity modes, in the presence and absence of RHF (L = 2 and L = 3), were measured. The results show that applying this system can change runaway electrons generation.  相似文献   

17.
This paper reports the initial plasma formation in glass spherical tokamak (GLAST-II) with electron cyclotron resonance pre-ionization assisted startup. Initially, a plasma current of 3 kA has been produced for duration of about 0.5 ms after establishing optimum conditions for microwave absorption at 2.45 GHz. Plasma current is then enhanced up to 5 kA by applying a small vertical magnetic field that provides additional plasma heating and shaping. Applied vertical field is optimized experimentally and optimal value is found to be 40 Gauss for this experiment. Plasma current and loop voltage are monitored by using Rogowski coil and toroidal loop of wire. A fast framing camera (5000 fps) is used for temporal investigation of plasma during the discharge scenario. A fast photodiode (BPX-65) and USB4000 spectrometer are used to record the signature of plasma current and the impurity content (O2, H etc.). Cross-sectional average electron temperature is also estimated from plasma resistivity and found to be 6.1 eV for maximum plasma current of 5 kA.  相似文献   

18.
Measurements of poloidal beta β p and internal inductance l i are essential in tokamak plasma research. Much more plasma parameters such as the plasma current density profile, magnetohydrodynamics instability, and plasma energy confinement time are determined by using these parameters. Discrete poloidal magnetic probes along with the diamagnetic loop can be utilized in measurement of the plasma poloidal beta β p and internal inductance l i . In this paper, theoretical and experimental results in determining β p and l i are presented and discussed.  相似文献   

19.
In this paper we present analysis of the effects of Toroidal Field ripple (TF ripple) on the plasma energy confinement time in IR-T1 Tokamak. For this purpose, a diamagnetic loop with its compensation coil were designed and installed on outer surface of the IR-T1 tokamak. Amplitude of the TF ripple is obtained 0.01, and also the effects of TF ripple on the plasma energy confinement time discussed. In presence of the TF ripple and in low field side of the IR-T1 tokamak chamber (θ = 0), the local value of energy confinement time increased, whereas in the high field side (θ = 180), the energy confinement time decreased.  相似文献   

20.
Measurement of the Asymmetry factor (Shafranov parameter) is essential in tokamak plasma experiments. The purpose of this paper is comparing of the magnetic probes, poloidal flux loops, and diamagnetic loops techniques in determination of the Asymmetry factor in tokamaks. For this reason, array of magnetic probes, flux loops, and diamagnetic loop with its compensation coil, were designed, constructed, and installed on outer surface of the IR-T1 tokamak chamber, and then the Asymmetry factor and poloidal beta measured. Moreover, a few approximate values of the internal inductance for the different plasma current density profiles are also calculated. Experimental results compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号