首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ITER correction coil (CC) cases have characteristics of small cross section, large dimensions, and complex structure. The cases are made of heavy thick (20 mm), high strength and high toughness 316LN austenitic stainless steel. The laser welding is used for the case closure welding, due to its low heat input and deformation. According to the structural size and feature of the two types of cases, a set of laser welding workstation for the ITER CC case closure welding is designed. A slip plate module for the welding robot is designed to increase its workspace. According to the result of the movement simulation of the welding robots, the workstation is successful to cover all weld seams on the cases. Also, the welding platform and fixtures (includes the special welding tilter of the SCC) of the BTCC case and the SCC cases are designed. To verify the design structural feasibility of the welding tilter of SCC, the structural analysis for the rotating process has been formed in detail by using ANSYS. The simulating results show that the stress of the welding tilter can meet both static and fatigue criteria, and thus the basic structure is valid.  相似文献   

2.
China Low Activation Martensitic steel (CLAMs), a kind of RAFM steel with Chinese intellectual property rights, is considered as the primary structural material for the China-designed ITER test blanket module (TBM). As one of the key issues in the fabrication of the fusion reactor, the welding technologies of CLAMs are reviewed. Emphasis is placed on the weldability of CLAMs by different welding methods, and on the properties of as-welded and post-weld heat-treated joints. Recent highlights in research and development for the welding of CLAMs show that proper welding procedure could provide welds with adequate tensile strength but the welds exhibit lower impact toughness compared with the base metal. Post-weld heat treatment (PWHT) and the application of ultrasonic energy during TIG welding could dramatically improve impact toughness. Research also shows that welds in CLAMs have sufficient resistance to swelling under irradiation as well as suitable compatibility with liquid LiPb. The microstructure, mechanical and other physical properties of welds are significantly different from those of the base metal due to the complicated welding thermal cycle. The weld joint is the area most likely to fail one or more of the design requirements within the fusion reactor. Therefore significant additional research is necessary to ensure safe application of welded CLAM steel for fusion reactor construction.  相似文献   

3.
T91和15-15Ti是第4代核能钠冷快堆和铅铋快堆候选结构材料,国内外对铁素体/马氏体钢和奥氏体钢焊接性能、焊后热处理、焊接应力等进行了广泛的研究。本文对T91/15-15Ti试板焊态和热处理态焊接接头的焊缝、热影响区和母材微观组织和力学性能变化进行了研究,为T91和15-15Ti异材焊接参数选用和材料应用提供实验数据。  相似文献   

4.
The mechanical testing of narrow-gap welded joints in 100 and 200 mm thick sections of the steel 22 NiMoCr 37 has revealed that the weld metal, and not the heat affected zone (HAZ) or the weld metal-parent metal boundary. is the critical region. This modified gas-shielded welding process operates with a very low heat input of the order of 6.500 J cm−1 pass−1 and the combination of small diameter welding wires and high welding speeds contributes to the excellent joint properties in the as-welded condition.To investigate the effect of preheating and post-welding heat treatment on the mechanical properties of narrow-gap welds, tensile, notch impact, flat bend and fracture toughness test specimens were extracted from joints welded with the following conditions: (1) no preheating: no post-weld heat treatment; (2) no preheating: soaking at 300°C: (3) no preheating: stress-relief heat treatment at 600°C; (4) preheating 200–250°C; no post-weld heat treatment; (5) preheating 200–250°C; soaking at 300°C; (6) preheating 200–250°C; stress relief heat treatment at 600°C. Tensile testing at room temperature and at 250°C of round specimens oriented across the seam revealed the ultimate fracture to be always located in the base material remote from the welded zone. Although pores or slag inclusions had an influence on bend-test results of specimens in the as-welded condition, the results generally show failure free bends to 180°C with no evidence of cracking in the HAZ or at the fusion boundary.Using sharp-notched impact bend specimens with the notch located in the centre of the seam as well as in and across the HAZ, absorbed energy-test temperature curves have been determined for each welding condition. In comparison with the base material impact toughness, the weld exhibits superior toughness in the temperature range − 60 – 0°C, but yielded lower values at room temperature. After stress relieving at 600°C, the impact toughness of the weld reduced significantly, apparently due to precipitations occurring in the weld-metal microstructure. Test results from welded specimens with the no notch in the HAZ show this region to have superior notch impact toughness to the base material.Crack opening displacement (COD) specimens 45 × 90 × 380 mm with the fatigue crack located in the weld metal and in the HAZ were tested at 0 and 20°C using both the recommendation in BS DD 19: 1972 as well as acoustic emission measurements for the determination of COD values. For this method of fracture toughness testing it has been shown that the occurrence of a critical event must be clearly defined as corresponding to stable crack growth or alternatively to unstable crack propagation.  相似文献   

5.
CLAM-316L TIG焊接接头显微组织特征分析   总被引:1,自引:0,他引:1  
采用309焊丝对中国低活化马氏体(CLAM)钢和316L不锈钢进行TIG焊,并利用光学显微镜、扫描电镜和维氏硬度仪分析对接接头的微观组织和显微硬度分布。结果表明,CLAM-316L TIG焊接头按照显微组织特征可分为六个区域,即CLAM钢母材、CLAM钢热影响区、CLAM钢熔合区、焊缝金属、316L热影响区、316L母材。CLAM钢熔合区显微组织为淬火马氏体;焊缝金属区为粗大的胞状枝晶组织;316L热影响区和母材均为奥氏体组织,热影响区晶粒尺寸有明显长大。焊态接头整体硬度分布均匀,只有CLAM钢熔合区硬度较高。  相似文献   

6.
With the prospect of a rapid and well-adapted application of the existing methods of predicting the fracture behaviour of welded assemblies in the presence of a defect, this study aims at gathering experimental data on the toughness of butt welded assemblies used in heavy sructures. This analysis of the toughness properties shows that the weld, and hence the various zones which compose it, have mechanical properties which are at least equal to those of the base metal. Although the E355 base metal contained niobium, the weld itself did not constitute a brittle zone in the welded assembly. Furthermore, the thickness of the welded plates seemed to have an effect on the mechanical behaviour of the HAZ only. For a thickness of 30 mm, this zone exhibits by far the highest toughness in the case of butt welded assemblies. Lastly, it is difficult to assess the beneficial or detrimental effect of the heat treatment applied for relieving the internal stresses because the metallurgical evolution in the weld, which takes place during the thermal cycle, sometimes embrittles or improves the toughness of the welded assembly. The application of the six models for predicting toughness as a function of temperature from the impact values of the base metal has shown that these correlations have a conservative range of validity. Outside the temperature-related range of validity, it was observed that Model (Rolf–Novak–Barsom), defined for the ‘end of ductile transition’ upper part was the most representative for predicting the toughness of the base metal as a function of temperature.  相似文献   

7.
《Journal of Nuclear Materials》2003,312(2-3):125-133
Thin walled calandria tubes for pressurised heavy water reactors are manufactured either by seam welding of Zircaloy-4 sheets or by seamless route. In the present study, the effect of processing on the critical properties such as texture, microstructure, hydriding behaviour and residual stress for both the routes as well as the mechanical anisotropy developed due to seam welding are investigated. The properties of the seam welded tube in the fusion and adjoining region are markedly different from the base material and from the seamless tube. Residual stress measurements indicate that heat affected zone (HAZ) of seam welded tubes have longitudinal tensile residual stress and the seamless tubes have uniform compressive stress along the circumference. The phase transition in the presence of residual stresses due to thermal gradient is found to modify the texture in the HAZ. The hydride orientation and mechanical anisotropy in these regions are found to be dependent on the texture of the material.  相似文献   

8.
为更好地掌握焊后热处理(PWHT)对SA517 Gr.F调质钢焊接接头性能的影响,对SA517 Gr.F调质钢手工电弧焊(SMAW)焊接接头进行了焊态(AW)与PWHT试样力学性能和组织分布特征的对比分析研究。分析结果表明:PWHT与AW相比,焊接接头室温拉伸和360℃高温拉伸的抗拉强度均有所下降;焊缝和热影响区(HAZ)峰值硬度降低。PWHT降低了焊接接头的残余应力,但未能改善焊缝和HAZ的冲击性能。建议对于SA517 Gr.F调质钢若满足ASME规范案例N-71-18条件,可免除焊后热处理。   相似文献   

9.
In order to better understand the effect of PWHT (post weld heat treatment) on SA517 Gr.F quenched and tempered steel welded joint, the mechanical properties and microstructure distribution characteristics of SA517 Gr.F welded joint by SMAW (shielding metal arc welding) before and after PWHT were compared and analyzed. The analysis results show that, compared with that of as-weld welded joint, both the room temperature and 360℃ high temperature tensile properties of the welded joint decrease, and the peak micro-hardness of weld metal and HAZ also decrease after PWHT. The residual stress of the welded joint is decreased by PWHT, however, the impact properties of the weld and HAZ are not improved. It is suggested that PWHT can be exempted for SA517 Gr.F quenched and tempered steel if the requirements of ASME Code Case N-71-18 can be satisfied.  相似文献   

10.
By using digital image correlation, the deformation behaviors of local domains of F82H joint specimens welded using tungsten inert gas (TIG) and electron beam (EB) welding were evaluated during tensile and fatigue testing. In the tensile test specimens, the tensile strength decreased in the TIG-welded joints, and ductility decreased in both the EB- and TIG-welded joints. Because axial strain increased in the tempered heat-affected zone (HAZ) and led to the fracture of the TIG-welded joint, the strength was considered to have decreased because of welding. In fatigue testing, the number of cycles to fracture for the welded joint decreased to less than 40–60% of that for the base metal. For both fracture specimens, the largest value of shear strain was observed in the region approximately between the fine-grained HAZ and tempered HAZ; this shear strain ultimately led to fracture. Cavities and macrocracks were observed in the fine-grained HAZ and tempered HAZ in the cross sections of the fracture specimens, and geometrical damage possibly resulted in the reduction of fatigue lifetime.  相似文献   

11.
Low Activation Ferritic–Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.  相似文献   

12.
采用自动钨极氩弧焊接(GTAW)工艺设计刚性约束坡口,制备了304不锈钢1次焊接和1~5次试样。采用光学显微镜、X射线衍射(XRD)、扫描电子显微镜(SEM)与电子背散射衍射(EBSD)技术对重复焊接试样的热影响区(HAZ)显微组织进行观察分析,并开展室温拉伸性能测试,研究重复焊接对显微组织与力学性能的影响。结果表明,重复焊接试样的HAZ显微组织主要由奥氏体和条状δ铁素体组成,随着重复焊接次数增加,HAZ奥氏体晶粒尺寸呈长大趋势,δ铁素体含量先减少后增加,组织择优取向由<101>转变为<111>,局域取向差逐渐增大;晶粒尺寸是影响抗拉强度和延伸率变化的主要原因,加工硬化致使试样屈服强度逐渐增加。   相似文献   

13.
The development of advanced fusion reactors like DEMO will have various challenges in materials and fabrication. The vacuum vessel is important part of the fusion reactor. The double walled design for vacuum vessel with thicker stainless steel material (40–60 mm) has been proposed in the advanced fusion reactors like ITER. Different welding techniques will have to be used for such vacuum vessel development. The required mechanical, structural and other properties of stainless steels have to be maintained in these joining processes of components of various shapes and sizes in the form of plates, ribs, shells, etc. The present paper reports characterization of welding joints of SS316L plates with higher thicknesses like 40 mm and 60 mm, prepared using multi-pass Tungsten Inert Gas (TIG) welding process. The weld quality has been evaluated with non-destructive tests by X-ray radiography and ultrasonic methods. The mechanical properties like tensile, bend tests, Vickers hardness and impact fracture tests have been carried out for the weld samples. Tensile property test results indicate sound weld joints with efficiencies over 100%. Hardening was observed in the weld zone in non-uniform manner. Macro and microstructure studies have been carried out for Base Metal (BM), Heat Affected Zone (HAZ) and Weld Zone (WZ). Scanning Electron Microscopy (SEM) analysis carried out for the impact fractured specimens show ductile fracture. The microstructural study and ferrite number data indicate the presence of high content of delta ferrite in the weld zone as compared to the delta ferrite in base metal.  相似文献   

14.
Reduced activation ferritic martensitic (RAFM) steel is a major structural material for test blanket module (TBM) to be incorporated in International Thermonuclear Experimental Reactor (ITER) programme to study the breeding of tritium in fusion reactors. This material has been mainly developed to achieve significant reduction in the induced radioactivity from the structural material used. Fabrication of TBM involves extensive welding, and gas tungsten arc welding (GTAW) process is one of the welding processes being considered for this purpose. In the present work, the effect of heat input on microstructure of indigenously developed RAFM steel weld metal produced by GTAW process has been studied. Autogenous bead-on-plate welding, autogenous butt-welding, butt-welding with filler wire addition, and pulsed welding on RAFMS have been carried out using GTAW process respectively. The weld metal is found to contain δ-ferrite and its volume fraction increased with increase in heat input. This fact suggests that δ-ferrite content in the weld metal is influenced by the cooling rate during welding. It was also observed that the hardness of the weld metal decreased with increase in δ-ferrite content. This paper highlights the effect of heat input and PWHT duration on microstructure and hardness of welds.  相似文献   

15.
The effect of thermal aging on mechanical properties and fracture toughness was investigated on pressure vessel steel of light water reactors. Submerged are welded plates of ASME SA508 C1.3 steel were isothermally aged at 350°C, 400°C and 450°C for up to 10,000 hrs. Tensile, Charpy impact and fracture toughness testings were conducted on the base metal and the weld heat affected zone (HAZ) material to evaluate whether thermal aging induced by the plant operation is critical for the integrity of the pressure vessel or not. Tensile properties of the base metal was not changed by thermal aging as far as the thermal aging conditions were concerned. Relatively distinct degradation was observed in fracture toughness JIC and J-resistance properties of both the base metal and the weld HAZ material, while only slight changes were observed in Charpy impact properties for both of them. However, it was concluded that the effect of thermal aging estimated by 40–80 years of plant operation on fracture toughness of both materials is small.  相似文献   

16.
J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. This weldment was machined into 1T and 2T compact specimens for single specimen unloading compliance J-integral tests. The specimens were cut to measure the fracure toughness of the base metal, weld metal and the heat affected zone (HAZ). The tests were performed at 550°F, 300°F and room temperature. The results of the J-integral tests indicate that the JIc of the base plate ranged from 4400 to 6100 in lbs/in2 at 550°F. The JIc values for the tests performed at 300°F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that JIc was greater than 8000 in lb/in2. The J-integral tests performed on the weld metal specimens indicate that the JIc values ranged from 930 to 2150 in lbs/in2 at 550°F. The JIc values of the weld metal specimens tested at 300°F and room temperature were 2300 and 3000 in lbs/in2 respectively. One HAZ specimen was tested at 550°F and found to have a JIc value of 2980 in lbs/in2 which indicates that the HAZ is an average of the base metal and weld metal thoughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding.The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550°F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these test indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack.  相似文献   

17.
When a ferritic-martensitic stainless steel (PNC-FMS) wrapper tube having far greater swelling resistance against neutron irradiation is applied in the JOYO or MONJU reactor, it becomes necessary to weld it with SUS316 austenitic stainless steel (entrance nozzle and handling head). Such welding between PNC-FMS and SUS316 causes the delta (δ) ferrite formation at heat-affected zone, which leads to significant toughness degradation. In addition, bending of wrapper tube caused by their differential thermal expansion should be straightened. For preventing those problems, manufacturing process of the complex wrapper tube was developed. This process involves TIG-welding with SUS316 short pipe joints in 50mm length to both ends of a PNC-FMS round tube, and then performing the drawing and normalizing and tempering. Normalizing induces complete disappearance of the δ ferrite in the course of wrapper tube manufacturing. The mechanical properties of PNC-FMS/SUS316 welded zone were confirmed to be equivalent to those of the base metal even after thermal aging.  相似文献   

18.
The employment of welded joints composed of dissimilar metals is one simple and inexpensive way to connect a main vessel made of austenitic stainless steel and a roof slab constructed of ferritic steel in the design of liquid metal fast reactors. Since dissimilar-metal welded joints have not been used for such large structures so far in Japan, the structural integrity of this type of joint should be carefully examined for such a design option to be selected. Here various kinds of tests were conducted for eleven types of welded joints of 50 mm thickness to obtain this fundamental strength characteristics. Type 304 stainless steel was used as one of the parent metals in all the joints. They differ from each other in regard to the type of ferritic steel, welding metal and welding procedure. Low-cycle fatigue tests were conducted for round-bar specimens made from these welded joints at room temperature. Fatigue crack-propagation tests were also conducted for some of the joints. Tests after manufacturing a large-scale shell model were also conducted. The results of these tests demonstrated that the present manufacturing technique can, produce welded joints of high quality and reliability. A trial calculation for actual design conditions showed the existence of large margins against fatigue failure or fatigue crack-propagation of a significant amount.  相似文献   

19.
The effects of specimen size and location of V-notch on the Charpy impact properties were investigated with different sizes of specimens, standard, CVN-1/2, CVN-1/3, and CVN-1.5 mm, for A533B steel, low Mn, high Cu, high phosphorus (P), and high Cu/P steel weld joint. A part of the specimens was irradiated with neutron at 563 K up to 8 × 1019 n/cm2. The heat affected zone (HAZ) specimen is the best in the impact properties among the specimens of base metal, HAZ, and weld metal in the steels with 0.003 wt.% P, while it is the worst in the steels with ~ 0.3 wt.% P. This indicates that the surveillance test of HAZ specimen can be represented by base metal in the case of A533B steels with lower P content (~ 0.003 wt.%). The effects of notch location and chemical contents on ductile to brittle transition temperature (DBTT) are almost independent of specimen size within an error of ±5 K, indicating that the miniaturized Charpy specimens are applicable and effective in the surveillance tests of reactor pressure vessel steel of extended operation period. After irradiation, the highest DBTT was observed for the specimen with V-notch in base metal in the case of A533B steel and high Cu steel with 0.003 wt.% P.  相似文献   

20.
EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号