首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of its effort to devise suitable technology for processing low-grade domestic materials and recycling wastes, the U.S. Bureau of Mines has evaluated the feasibility of smelting a chromite concentrate derived from residues generated by the processing of nickel and cobalt from domestic later-ites. The product sought was a high-carbon ferrochromium suitable for stainless- and alloy-steel production. The concentrate was blended with re-ductants and fluxing constituents and was smelted under submerged arc conditions in a laboratory-scale, single-phase ac electric arc furnace. The results revealed that metallurgical-grade coke provides the best quality product. High-carbon ferrochromium, which met ASTM specifications except for phosphorus and sulfur, was obtained. Agglomeration of the charge materials was not required.  相似文献   

2.
Thermal spray processes have been widely used to minimize losses caused by wear mechanisms. Sprayed deposits using conventional wire and powder materials have been long solving tribological problems in engineering equipment. More recently, the option for new different technologies and consumables like nanostructured powder materials and nanocomposite cored wires have expanded the possibilities for technical solutions. Cored wire technology allows the use of compositions that cannot be drawn into wire form like carbides in metallic matrix and high-temperature materials, thus, intensifying the use of spraying processes with low operating cost to demanding wear and corrosion applications. The objective of this work was to study the mechanical characteristics and wear performance of coatings obtained by Flame, Wire Arc, and HVOF spraying using selected nanostructured WC10Co4Cr, WC12Co, and Fe-based 140 MXC powder and wire materials. Abrasive wear performance of the coatings was determinate following the ASTM G-65 standard. Based on the results, a higher abrasive wear resistance was found for the HVOF-sprayed WC10Co4Cr nanostructured coating.  相似文献   

3.
Electrochemical processing is used extensively in the primary extraction of metals (electrowinning), the purification and recycling of metals (electrorefining), and the formation of metal coatings (electroplating). With respect to the refractory metals, electrochemical processing is conducted almost exclusively in nonaqueous media, predominantly in molten salts. Electrolysis infused salts as well as other nonaqueous media has enormous potential for materials processing. First, because of the special attributes of nonaqueous electrolytes, electrochemical processing in these media has an important role to play in the generation of advanced materials—materials with specialized chemistries or tailored microstructures (electrosynthesis). Second,as environmental quality standards rise beyond the capabilities of classical metals extraction technologies to comply, electrochemical processing may prove to be the only acceptable route from ore to metal.  相似文献   

4.
The performance of very large-scale integrated circuits is significantly determined by the reliability of interconnection materials. Electromigration, or diffusion of the interconnection material induced by the high current density used in the connections, gives rise to voids which are a major culprit in device failures. Materials solutions are possible, but the device fabrication processes are more technologically advanced than the performance of interconnection materials. A variety of reliability tests can be conducted, but if these tests are accelerated over real-world conditions, they may introduce new failure modes, producing essentially useless statistics. For advances in device performance to continue efficiently, alloy design, failure analysis, reliability testing and lifetime characterization must be thoroughly applied.  相似文献   

5.
A review of the energy innovations for the electric arc furnace (EAF) steelmaking route is discussed. Preheating of scrap using vertical and horizontal shafts that have been commercially successful in lowering the energy consumption to as much as 90 kWh/t reaching almost the operational limit to heating input scrap materials into the EAF is discussed. Bucket-type and twin-shell preheaters have also shown to be effective in lowering the overall power consumption by 60 kWh/t, but these have been less effective than the vertical shaft-type preheaters. Beyond the scrap preheating technologies, the utilization of waste heat of the slags from the laboratory scale to the pilot scale has shown possible implementation of a granulation and subsequent heat exchange with forced air for energy recovery from the hot slags. Novel techniques to increase metal recovery have shown that laboratory-scale testing of localized Fe concentration into the primary spinel crystals was possible allowing the separation of an Fe-rich crystal from an Fe-depleted amorphous phase. A possible future process for converting the thermal energy of the CO/CO2 off-gases from the EAF into chemical energy was introduced.  相似文献   

6.
The depletion of high grade ores and accumulation of huge quantities of metallic scrap and metallurgical wastes have generated significant interest in their processing. In this paper, both pyrometallurgical, as well as hydrometal-lurgical, methods for metal recovery from scrap and wastes (viz., slag, dusts, aqueous effluents, sludge and residues) are reviewed. Scrap recycling and the processing of metallurgical wastes will pollute the environment to a lesser extent and consume less energy compared to the primary metal production. Reprocessing metallurgical waste (viz., slag, red mud, etc.) serves a social objective and ensures raw materials conservation. Research trends reveal that hydrometallurgy may play a dominant role in the waste treatment. Recently developed processes like continuous ion exchange and fluidized bed electrolysis may be used in the future for recovering metals from dilute solutions.  相似文献   

7.
Tracer diffusivities provide the most fundamental information on diffusion in materials, and are the foundation of robust diffusion databases that enable the use of the Onsager phenomenological formalism with no major assumptions. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS)-based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. An overview of the thin-film method for tracer diffusion studies using stable isotopes is provided. Experimental procedures and techniques for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-high vacuum system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin-film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is demonstrated. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (Trans. AIME 250:1021-1025, 1954) was found to be a good representation of both types of diffusion data over a broad range of temperatures between 250 and 627 °C (523 and 900 K).  相似文献   

8.
The method of heat generation, heat transfer characteristics, and ingot structure are very different in the VAR and ESR processes, which result in different tendencies and mechanisms for macrosegregation formation in forged IN-718. Freckles are niobium rich and can be generated in both ESR and VAR, with higher incidence in ESR than VAR. White spots are niobium lean and can only be found in VAR-processed materials. Freckles are indige-nous in nature, and result from the flow of solute-rich interdendritic liquid in the mushy zone during solidification. The most plausible cause for white spots is exogenous material, which remains unmelted, falling into the molten pool. The best way to minimize the formation of freckles is to improve the ingot heat transfer rate, a more difficult task in ESR than in VAR.  相似文献   

9.
Investigations were carried out to study the effect of the chemical composition of filler material in welding an alloy of the Al–Mg–Li system on the hot crack formation resistance and the mechanical properties of welded joints. The effect of metallurgical factors on the formation of defects in the fusion zone was investigated using the spot weldability testpiece. The chemical composition of 1420 alloy was optimized and this greatly reduced the number of defects. The investigations were carried out in the framework of the research project 10.8. Technology of fusion welding of new constructional materials (‘Strategic directions of development of materials and technologies of processing these materials for the period up to 2030’) [1 Kablov EN. The strategic directions of development of materials and technologies of processing these materials for the period to 2030. Aviatsionnye materialy i tekhnologii. 2012;5:717. [Google Scholar]].  相似文献   

10.
This work reports an efficient reactor, i.e., oxygen-rich side blow furnace (OSBF), for high-lead slag reduction. An OSBF with a cross-sectional area of 8.4 m2 was applied in an industrial-scale test and the results were compared with those from a traditional high-lead slag reduction reactor, i.e., blast furnace (BF), with which an additional electric heating fore well (EHFW) was connected for slag cleaning. By using the OSBF, Pb and Cu recoveries were raised by 1.07% and 7.99% compared with those from the traditional BF+EHFW, respectively. The optimal slag type for recovering metal values in the OSBF was also analyzed. Within the range of Fe/SiO2 = 1.56–1.87 and CaO/SiO2 = 0.8–1.05, lower Pb and Cu contents of the slag can be achieved with Fe/SiO2 = 1.65–1.75 and CaO/SiO2 = 1.0.  相似文献   

11.
In this study, the AlN/Cu bonding was explored using the brazing technique. During AlN/Cu brazing, the temperature was set at 800, 850, and 900 °C for 10, 20, 30, and 60 min, respectively. We studied the bonding mechanism, microstructure formation, and the mechanical characteristics of the bond. The reaction layer developed at the interface of AlN/Cu is observed to be TiN. The activation energy of TiN is about 149.91 kJ/mol. The reaction layer thickness is linearly dependent on the temperature and duration at 800 and 850 °C for 60 min and 900 °C for 30 min. However, the growth of the reactive layers decreases gradually at 900 °C when the duration changed from 30 to 60 min. The strength of the specimens with thickness ranging between 1 and 1.5 μm is 40-51 MPa.  相似文献   

12.
Laboratory procedures were established to produce advanced aluminum 2XXX+ Zr alloy powder metallurgy sheet in the T8X temper. The sheet was tested for tensile and Kahn Tear properties in the longitudinal and long transverse directions. The results from the laboratory-produced sheet were compared to the results of a pilot-scale NASA contractual study which used the same alloy powders, leading to the conclusion that laboratory-scale sheet properties are good to excellent predictors of the pilot-scale tensile properties and tear notch toughness values. Tear resistance toughness at pilot scale was not satisfactorily predicted by the laboratory results.  相似文献   

13.
A computational approach, which targets on the prediction of SiC recession caused by SiO2 scale volatility under combustion environments, was developed in this study. In this approach, thermodynamic calculation was integrated with a gaseous-diffusion model to calculate the fluxes of volatile species, such as SiO(g), Si(OH)4(g), SiO(OH)2(g), and SiO(OH)(g), produced by the reaction of SiO2 scale with the combustion air. The resulted weight loss of SiC was then calculated under a variety of combustion environments. The benefit of using environmental barrier coating (EBC) in the protection of SiC from recession was demonstrated by the calculation. It is shown that the weight loss of SiC-based ceramics could be significantly reduced when EBCs, such as mullite (Al6Si2O13 or written as 3Al2O3·2SiO2) or SrAS2 (SrO·Al2O3·2SiO2), are used. The effects of combustion conditions, such as temperature and total pressure, on the volatility of SiO2 scale were also discussed.  相似文献   

14.
An increase in the utilization efficiency of CaO, one of the major fluxing agents used in various steelmaking processes, is required to reduce the amount of discharged slag and energy consumption of the process. The authors have intensively focused on the development of innovative dephosphorization process by using so called “multi-phase flux” composed of solid and liquid phases. This article summarizes the research on the above topic done by the authors, in which the formation mechanisms of P2O5-containing phase during CaO or 2CaO·SiO2 dissolution into molten slag, the phase relationship between solid and liquid phases at equilibrium, and thermodynamic properties of P2O5-containing phase have been clarified. The reactions between solid CaO or 2CaO·SiO2 and molten CaO-FeO x -SiO2-P2O5 slag were observed by dipping solid specimen in the synthesized slag at 1573 K or 1673 K. The formation of the CaO-FeO layer and dual-phase layer of solid 2CaO·SiO2 and FeO x -rich liquid phase was observed around the interface from the solid CaO side toward the bulk slag phase side. Condensation of P2O5 into 2CaO·SiO2 phase as 2CaO·SiO2-3CaO·P2O5 solid solution was observed in both cases of CaO and 2CaO·SiO2 as solid specimens. Measurement of the phase relationship for the CaO-FeO x -SiO2-P2O5 system confirmed the condensation of P2O5 in solid phase at low oxygen partial pressure. The thermodynamics of 2CaO·SiO2-3CaO·P2O5 solid solution are to be clarified to quantitatively simulate the dephosphorization process, and the current results are also introduced. Based on the above results, the reduction of CaO consumption, the discharged slag curtailment, and energy-saving effects have been discussed.  相似文献   

15.
Nowadays, the serial production of Carbon Fiber-Reinforced Polymers remains a challenge for the industry. Their production and application have been limited by the intensive manual work required to produce them and the resulting elevated manufacturing costs. Moreover, the production handling tasks are fulfilled to a limited extent by the gripping systems currently available in the market. The delicate process and specific material requirements of these polymers compromise the feasibility and use of automated gripper systems. An innovative solution for the automated material handling of carbon fiber textiles developed by the wbk Institute for Production Science in cooperation with J. Schmalz GmbH will be presented in this paper. The main focus of this study deals with measuring principles to increase energy efficiency, process reliability and adaptability of a gripping system using low pressure grippers. This study presents suitable solutions for the implementation of low pressure grippers in a production environment.  相似文献   

16.
The family of plate steels represented by ASTM Specification A7101 is finding increasing applications. These low carbon, Cu-Ni-Cr-Mo-Cb, copper precipitation hardened steels have been identified by a number of designations over the years. During early development in the late 1960’s and first commercial production in 1970, the steels were known as IN-787 (trademark of International Nickel Company).2 ASTM specifications were subsequently developed for structural (A710) and pressure vessel (A736) applications over ten years ago. More recent interest and application of this family of steels by the U.S. Navy has lead to development of a military specification MIL-S-24645 (SH),3 also initially known as “HSLA-80.” Significant tonnage is being produced for the U.S. Navy as a replacement for HY80 (MIL-S-16216) in cruiser deck, bulkhead and hull applications.4 In these applications, the enhanced weldability and requirement of no preheat at this high strength and toughness level has been the main motivation for its use. Over the past 15 years, A710 type steels have also been used in a variety of applications, including off-shore platforms, pressure vessels, arctic linepipe valves and off-highway mining truck frames.  相似文献   

17.
In the present work iron oxide nanoparticles have been synthesized by alkaline solvo thermal method using anhydrous ferric chloride, sodium hydroxide, polyethylene glycol and cetyl trimethyl ammonium bromide and characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray Spectroscopy (EDX) and Thermal Gravimetric Analysis (TGA). XRD indicated that the product is a mixture of different phases of iron oxide viz. gamma-Fe2O3 (maghemite, tetragonal), Fe2O3 (maghemite, cubic), Fe3O4 (magnetite, cubic) and ?-Fe2O3(epsilon iron oxide). FESEM studies indicated that size of the particles is observed in the range of about 19.8 nm to 48 nm. EDX spectral analysis reveals the presence of carbon, oxygen, iron in the synthesized nanoparticles. The FTIR spectra indicated absorption bands due to O-H stretching, C-O bending, N-H stretching and bending, C-H stretching and Fe-O stretching vibrations. TGA curve represented weight loss of around 3.0446 % in the sample at temperature of about 180°C due to the elimination of the water molecules absorbed by the nanoparticles from the atmosphere.  相似文献   

18.
Nanocrystalline thin films of ZnO have been fabricated using the pulsed laser deposition method. The influence of the ion/atom ratio on the structural, morphological, and electrical parameters of these films is considered. It is established that, in the case of ion action on thin films, their crystalline structure and electrophysical properties are significantly changed. It is demonstrated that modes of ion-assisted deposition can help to control the average grain size in the range from 75.4 ± 2.0 nm to 79.1 ± 2.0 nm, the roughness in the range from 2.14 ± 1.11 nm to 7.30 ± 1.25 nm, and the resistivity and mobility in the range from (22.6 ± 2) × 10?4 Ohm cm to (33.6 ± 2) × 10?4 Ohm cm and from 28.21 ± 4.60 cm2/V s to 71.92 ± 2.50 cm2/V s, respectively.  相似文献   

19.
A study of several engineering alloys implanted at ultrahigh current densities has revealed that the process induces no change in the bulk microsctructure of the materials. Even though temperatures induced during processing exceed the transformation (tempering and annealing) temperatures, there is insufficient time for nucleation and growth reactions to occur during the temperature excursion associated with typical implantation dose and energy conditions. Substantially lower costs should accompany the shorter duration ultrahigh current density implantation process. Auger electron spectrographs reveal a substantially extended nitrogen range over those observed at low current densities (four-fold increase). This enhanced range appears to be due to radiation enhanced diffusion effects. Deeper penetration could lead to more durable surface layers.  相似文献   

20.
This research aims to study the effect of accelerated weathering conditions on the photodegradation characteristics for fibrillar silicate clay-filled Polypropylene (PP) nanocomposites in the presence of metallocene linear low density polyethylene (m-LLDPE). Silane-treated attapulgite (ATP) clay along with ethylene octene elastomer-grafted maleic anhydride (POE-g-MAH) was used to compatibilize both blend and nanocomposite system. The result showed that developed PP/m-LLDPE nanocomposites displayed good UV resistance with little change in retained stress-at-break and elongation-at-break values. Balanced loss of toughness values noted maintaining higher fracture toughness values for nanocomposites containing 5 phr ATP clay. Infrared analysis was used to detect progress of degradation followed by change in carbonyl index revealed predominated chain scission in late irradiation, while crosslinking was dominant for initial irradiation period. An increase in crystallinity during UV exposure (chemi-crystallization) was detected with exposure time for all compositions and virtually independent of initial structure of the polymer. The highest value of crystallization observed for PP and the lowest one for nanocomposites containing 5 phr of ATP clay revealed good oxidation stability. Surface morphology revealed induced degradation throughout cross-section of PP, while severity of the surface degradation was significantly reduced for developed nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号