首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic elements of a fairly complete optomechanical kit based on the use of LEGO are presented. Taking advantage of the great variety of standard LEGO elements, and adding a few custom components made of Plexiglas, we show how most of the mechanical parts of an optical setup can be built with little effort and at an extremely reduced cost. Several systems and experiments are presented, mainly in the fields of optical filtering and interferometry, to show that the proposed mounts are excellent for didactic purposes and often perfectly suitable even in applied research.  相似文献   

2.
Liu B  Wang Y  Dilts S  Mayer TS  Mohney SE 《Nano letters》2007,7(3):818-824
The solid-state reaction between platinum and silicon nanowires grown by the vapor-liquid-solid technique was studied. The reaction product PtSi is an attractive candidate for contacts to p-type silicon nanowires due to the low barrier height of PtSi contacts to p-type Si in the planar geometry, and the formation of PtSi was the motivation for our study. Silicidation was carried out by annealing Pt on Si nanowires from 250 to 700 degrees C, and the reaction products were characterized by transmission electron microscopy. Strikingly different morphologies of the reacted nanowires were observed depending on the annealing temperature, platinum film thickness, silicon nanowire diameter, and level of unintentional oxygen contamination in the annealing furnace. Conversion to PtSi was successfully realized by annealing above 400 degrees C in purified N2 gas. A uniform morphology was achieved for nanowires with an appropriate combination of Si nanowire diameter and Pt film thickness to form PtSi without excess Pt or Si. Similar to the planar silicidation process, oxygen affects the nanowire silicidation process greatly.  相似文献   

3.
4.
Lee EK  Choi BL  Park YD  Kuk Y  Kwon SY  Kim HJ 《Nanotechnology》2008,19(18):185701
High quality, single-crystal silicon nanowires were successfully grown from silicon wafers with a nickel catalyst by utilizing a solid-liquid-solid (SLS) mechanism. The nanowires were composed of a crystalline silicon core with an average diameter of 10?nm and a thick outer oxide layer of between 20 and 30?nm at a growth temperature of 1000?°C. When utilizing the SLS growth mechanism, the diameter of the silicon nanowire is dependent solely upon the growth temperature, and has no relation to either the size or the shape of the catalyst. The characteristics of the silicon nanowires are highly dependent upon the properties of the silicon substrate, such as the crystal phase of silicon itself, as well as the doping type. The possibility of doping of silicon nanowires grown via the SLS mechanism without any external dopant source was demonstrated by measuring the electrical properties of a silicon nanowire field effect transistor.  相似文献   

5.
We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.  相似文献   

6.
Ning  Rui  Jiang  Yue  Zeng  Yitian  Gong  Huaxin  Zhao  Jiheng  Weisse  Jeffrey  Shi  Xinjian  Gill  Thomas M.  Zheng  Xiaolin 《Nano Research》2020,13(5):1459-1464

On-demand hydrogen generation is desired for fuel cells, energy storage, and clean energy applications. Silicon nanowires (SiNWs) and nanoparticles (SiNPs) have been reported to generate hydrogen by reacting with water, but these processes usually require external assistance, such as light, electricity or catalysts. Herein, we demonstrate that a porous SiNWs array, which is fabricated via the metal-assisted anodic etching (MAAE) method, reacts with water under ambient and dark conditions without any energy inputs. The reaction between the SiNWs and water generates hydrogen at a rate that is about ten times faster than the reported rates of other Si nanostructures. Two possible sources of enhancement are discussed: SiNWs maintain their high specific surface area as they don’t agglomerate, and the intrinsic strain of the nanowires promotes the reactivity. Moreover, the porous SiNWs array is portable, reusable, and environmentally friendly, yielding a promising route to produce hydrogen in a distributed manner.

  相似文献   

7.
An approach is developped to gain control over the polarity of neuronal networks at the cellular level by physically constraining cell development by the use of micropatterns. It is demonstrated that the position and path of individual axons, the cell extension that propagates the neuron output signal, can be chosen with a success rate higher than 85%. This allows the design of small living computational blocks above silicon nanowires.  相似文献   

8.
Nanowire-based detection strategies provide promising new routes to bioanalysis and indeed are attractive to conventional systems because of their small size, high surface-to-volume ratios, electronic, and optical properties. A sequence-specific detection of single-stranded oligonucleotides using silicon nanowires (SiNWs) is demonstrated. The surface of the SiNWs is functionalized with densely packed organic monolayer via hydrosilylation for covalent attachment. Subsequently, deoxyribonucleic acid (DNA) is immobilized to recognize the complementary target DNA. The biomolecular recognition properties of the nanowires are tested via hybridization with γP32 tagged complementary and non-complementary DNA oligonucleotides, showing good selectivity and reversibility. No significant non-specific binding to the incorrect sequences is observed. X-ray photoelectron spectroscopy, fluorescence imaging, and nanodrop techniques are used to characterize the modified SiNWs and covalent attachment with DNA. The results show that SiNWs are excellent substrates for the absorption, stabilization and detection of DNA sequences and could be used for DNA microarrays and micro fabricated SiNWs DNA sensors.  相似文献   

9.
Infrared (IR) spectra of the silicon nanowires (SiNWs) with oxide layer are analyzed by introducing the disorder-induced mechanical coupling between the optically active oxygen asymmetric stretch (AS) and inactive oxygen asymmetric stretch (I-AS) modes in terms of the transverse-optic (TO) and longitudinal-optic (LO) vibrational modes. The shapes of the IR spectra are similar to that of the reported SiO2, indicating that the SiNWs possess an oxide layer outside. The TO frequencies of coupled AS and I-AS are experimentally observed as peak at approximately 1085 cm− 1 and its shoulder of 1200 cm− 1, respectively. The other TO absorption peaks of ∼ 468 cm− 1, ∼ 480 cm− 1, and ∼ 808 cm− 1 are also observed. Furthermore, the intensity of the AS-mode TO band centered at ∼ 1085 cm− 1 decreases while those of silicon lattice absorption peaks are enhanced with the crystalline quality increased.  相似文献   

10.
Recent publications have reported the presence of hexagonal phases in Si nanowires. Most of these reports were based on 'odd' diffraction patterns and HRTEM images—'odd' means that these images and diffraction patterns could not be obtained on perfect silicon crystals in the classical diamond cubic structure. We analyze the origin of these 'odd' patterns and images by studying the case of various Si nanowires grown using either Ni or Au as catalysts in combination with P or Al doping. Two models could explain the experimental results: (i) the presence of a hexagonal phase or (ii) the presence of defects that we call 'hidden' defects because they cannot be directly observed in most images. We show that in many cases one direction of observation is not sufficient to distinguish between the two models. Several directions of observations have to be used. Secondly, conventional TEM images, i.e. bright-field two-beam and dark-field images, are of great value in the identification of 'hidden' defects. In addition, slices of nanowires perpendicular to the growth axis can be very useful. In the studied nanowires no hexagonal phase with long range order is found and the 'odd' images and diffraction patterns are mostly due to planar defects causing superposition of different crystal grains. Finally, we show that in Raman experiments the defect-rich NWs can give rise to a Raman peak shifted to 504–511 cm?1 with respect to the Si bulk peak at 520 cm?1, indicating that Raman cannot be used to identify a hexagonal phase.  相似文献   

11.
To WK  Tsang CH  Li HH  Huang Z 《Nano letters》2011,11(12):5252-5258
In general, n-type mesoporous silicon nanowires (mp-SiNWs) are exclusively created by the two-step metal-assisted chemical etching (MACE). This work first reports that one-step MACE (in HF and AgNO3) is also capable of producing the n-type mp-SiNWs, and the developed formula is generally adapted to generate SiNWs by etching n-Si(100) with electrical resistivity over a range of 10(-3)-10(1) Ω·cm. Integrating the contribution of silicon intrinsic properties in the existing MACE mechanism explicitly accounts for the new findings and contradictions with previous studies. The as-generated mesoporous structures emit red light under laser excitation at room temperature. The red-color emission sensitively varies with temperature over a range of 16-300 K, attributed to a temperature-dependent photoluminescent mechanism.  相似文献   

12.
Electrochemical and laser-induced etching processes were simultaneously used to synthesize the nanowires structure of porous silicon (PS). Surface morphology and structural properties of nanostructured silicon were characterized by using scanning electron microscopy (SEM) and atomic forces microscopy (AFM) images. Nanowires with dimensions of few nanometers were formed on the whole etched surface. The optical properties of silicon nanostructures were studied. Raman spectra were shifted and broadened relatively to 519.9 cm−1 of PS prepared by electrochemical etching, and shifted to 517.2 cm−1 for laser-induced etching process and to 508.9 cm−1 for electrochemical and laser etching simultaneously. Blue shift luminescence was observed at 649.6 nm for PS produced by electrochemical etching, and at 629.5 nm for laser-induced etching. PS produced a blue shift at 626.5 nm using both etching procedures simultaneously. X-Ray diffraction (XRD) was used to investigate the crystallites size of the PS as well as to provide an estimate of the degree of crystallinty of the etched sample.  相似文献   

13.
We use tapered silica fibers to inject laser light into ZnO nanowires with diameters around 250 nm to study their waveguiding properties. We find that high-order waveguide modes are frequently excited and carry significant intensity at the wire surface. Numerical simulations reproduce the experimental observations and indicate a coupling efficiency between silica and ZnO nanowires of 50%. Experimentally, we find an emission angle from the ZnO nanowires of about 90 degrees , which is in agreement with the simulations.  相似文献   

14.
Abstract

As an improved directional solidification (DS) method, the complex directional solidification (CDS) method is used for purifying and preparing multicrystalline silicon ingot in this experiment. The induced electromagnetic field is imposed to control refining and solidification process. An integral silicon ingot with the diameter of 130 mm, the length of 130 mm and the weight of 4 kg is successfully fabricated in a self-designed CDS furnace. Metallographic analyses reveal that the direction of the most grains is parallel to the axial of silicon ingot. Analyses proved that the distribution of impurities in the cross-section is more homogeneously, the distribution in axial is improved and the effective length of silicon ingot is increased. Theoretical calculations indicate that the effect of solidified rate on the removal of impurities is limited and the impurities can be removed effectively after more than two times directional solidification process.  相似文献   

15.
We report on the electronic transport properties of multiple-gate devices fabricated from undoped silicon nanowires. Understanding and control of the relevant transport mechanisms was achieved by means of local electrostatic gating and temperature-dependent measurements. The roles of the source/drain contacts and of the silicon channel could be independently evaluated and tuned. Wrap gates surrounding the silicide-silicon contact interfaces were proved to be effective in inducing a full suppression of the contact Schottky barriers, thereby enabling carrier injection down to liquid helium temperature. By independently tuning the effective Schottky barrier heights, a variety of reconfigurable device functionalities could be obtained. In particular, the same nanowire device could be configured to work as a Schottky barrier transistor, a Schottky diode, or a p-n diode with tunable polarities. This versatility was eventually exploited to realize a NAND logic gate with gain well above one.  相似文献   

16.
Choi SJ  Ahn JH  Han JW  Seol ML  Moon DI  Kim S  Choi YK 《Nano letters》2011,11(2):854-859
Through the fusion of electrostatics and mechanical dynamics, we demonstrate a transformable silicon nanowire (SiNW) field effect transistor (FET) through a wafer-scale top-down approach. By felicitously taking advantage of the proposed electrostatic SiNW-FET with mechanically movable SiNWs, all essential logic gates, including address decoders, can be monolithically integrated into a single device. The unification of various functional devices, such as pn-diodes, FETs, logic gates, and address decoders, can therefore eliminate the complex fabrication issues associated with nanoscale integration. These results represent a step toward the creation of multifunctional and flexible nanoelectronics.  相似文献   

17.
The use of gallium droplets for growing Si nanowires (SiNWs) by electron cyclotron resonance plasmas is investigated. First, the relationship between evaporation time and resultant size of the gallium droplets is studied. Through the use of spectroscopic ellipsometry, the dependence of the surface plasmon resonance (SPR) energy on the droplet size is determined. From these gallium droplets, SiNWs were grown at 300 and 550?°C in electron cyclotron resonance plasmas containing SiH(4), Ar, and H(2). Scanning electron microscopy results show that tapered NWs are obtained for a wide range of growth conditions. Besides, it is found that H(2) plays an important role in the parasitic axial growth of the SiNWs. Namely, H(2) inhibits the radial growth and contributes dramatically to increasing the SiNW defects.  相似文献   

18.
An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the help of photolithography and wet etching. Due to dewetting, Cu atoms shrink to the center of patterns during the annealing process, and react with the SiO2 film to open a diffusion channel for Si atoms to the substrate. α-SiNWs finally grow at the center of Cu patterns, and can be tuned by varying critical factors such as Cu pattern volume, SiO2 thickness, and annealing time. This offers a simple way to synthesize and accurately position a SiNW array on a large area.
  相似文献   

19.
Silicon carbide (SiC) nanowire has been fabricated by hot filament chemical vapour deposition (HFCVD) mechanism in the temperature range of 600–800°C. Synthesis is performed under vacuum in the atmospheres of hexamethyldisiloxane/alcohol (HMDSO/C2H5OH) vapour and hydrogen (H2) gas mixture. In this research dependence of SiC properties on temperature is discussed. Morphology and structural properties of SiC nanowire grown on glass substrate were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy diffraction spectrometer (EDX), and four-point probe (4PP). Also Mountains Map Premium (64-bit version) software is used to investigate morphological features of samples. In this context, the analysis of the motifs, depth histograms, statistical parameters, texture direction, fractal, and the peak count histograms of the nanostructure surface of samples are carried out. According to analysis, SiC films had a good crystal quality without defects or low residual stress. We found that increasing substrate temperature increases silicon and oxygen doping amount. We also found that electrical resistivity and surface roughness increased by increasing substrate temperature. This study showed that SiC nanowires with high density grew on the free catalyst glass substrate, and the alignment of SiC nanowires decreased.  相似文献   

20.
Amorphous silica nanowires have been produced by thermal annealing of Si/SiO2/Ni substrate structures at 900 degrees C under an atmosphere of hexamethyldisilazane (HMDS) and hydrogen (H2). The wires have diameter ranging from 35 to 55 nm, which are controlled by the Ni particle size. It is demonstrated that the growth occurs through vapor-liquid-solid mechanisms, and it is proposed that the vapor source is volatile SiO generated from the etching of the Si substrate through active oxidation reactions. The role of the HMDS-H2 atmosphere in promoting such reactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号