首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low dimensional semiconductors can be used for various electronic and optoelectronic devices because of their unique structure and property.In this work,one-dimensional Sb2S3 nanowires(NWs)with high crystallinity were grown via chemical vapor deposition(CVD)technique on SiO2/Si substrates.The Sb2S 3 NWs exhibited needle-like structures with inclined cross-sections.The lengths of Sb2S3 nanowires changed from 7 to 13 pm.The photodetection properties of Sb2S3 nanowires were comprehensively and systematically characterized.The Sb2S3 photodetectors show a broadband photoresponse ranging from ultraviolet(360 nm)to near-infrared(785 nm).An excellent specific detectivity of 2.1×1014 Jones,high external quantum efficiency of 1.5×104%,sensitivity of 2.2×104 cm2W-1 and short response time of less than 100 ms was achieved for the Sb2S3 NW photodetectors.Moreover,the Sb2S3 NWs showed out-standing switch cycling stability that was beneficial to the practical applications.The high-quality Sb2S3 nanowires fabricated by CVD have great application potential in semiconductor and optoelectronic fields.  相似文献   

2.
We report scanned probe characterizations of the ferroelectric phase transition in individual barium titanate (BaTiO3) nanowires. Variable-temperature electrostatic force microscopy is used to manipulate, image, and evaluate the diameter-dependent stability of ferroelectric polarizations. These measurements show that the ferroelectric phase transition temperature (TC) is depressed as the nanowire diameter (dnw) decreases, following a 1/dnw scaling. The diameter at which TC falls below room temperature is determined to be approximately 3 nm, and extrapolation of the data indicates that nanowires with dnw as small as 0.8 nm can support ferroelectricity at lower temperatures. We also present density functional theory (DFT) calculations of bare and molecule-covered BaTiO3 surfaces. These calculations indicate that ferroelectricity in nanowires is stabilized by molecular adsorbates such as OH and carboxylates. These adsorbates are found to passivate polarization charge more effectively than metallic electrodes, explaining the observed stability of ferroelectricity in small-diameter BaTiO3 nanowires.  相似文献   

3.
The optical transmittance spectra of relaxor ferroelectric 0.92Pb(Zn(1/3)Nb(2/3))O(3)-0.08PbTiO(3) (PZN-8%PT) single crystals poled along different directions have been systematically studied at room temperature. After being poled along the [011] direction, the transmittance of induced orthorhombic PZN-8%PT single crystal is more than 50% from 0.5 to 5.7 μm, which is much higher than that poled along the [001] and [111] directions. The refractive indices and linear electro-optic properties of the orthorhombic PZN-8%PT single crystal were characterized at a wavelength of 632.8 nm. Large electro-optic responses were observed, (γ33) = 220 pm/V, (γ13) = 62 pm/V, and (γ23) = 23 pm/V. Thus, orthorhombic PZN-8%PT single crystal is a promising material for high-performance electro-optic devices.  相似文献   

4.
Lee SH  Shim W  Jang SY  Roh JW  Kim P  Park J  Lee W 《Nanotechnology》2011,22(29):295707
We report the thermoelectric performance of individual PbTe nanowires with sizes ranging from 76 to 436 nm grown from a vapor transport method that synthesizes high-quality, single-crystalline PbTe nanowires. Independent measurements of temperature-dependent Seebeck coefficient (S), thermal conductivity (κ) and electrical conductivity (σ) of individual PbTe nanowires were investigated. By varying the nanowire size, the simultaneous increase and decrease of S (-130 μV K(-1)) and κ (1.2 W m(-1) K(-1)), respectively, are achieved at room temperature. Our results demonstrate the enhanced thermoelectric properties of individual single-crystalline PbTe nanowires, compared to that of bulk PbTe, and can provide guidelines for future work on nanostructured thermoelectrics based on PbTe.  相似文献   

5.
Xu S  Poirier G  Yao N 《Nano letters》2012,12(5):2238-2242
A profound way to increase the output voltage (or power) of the piezoelectric nanogenerators is to utilize a material with higher piezoelectric constants. Here we report the synthesis of novel piezoelectric 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.28PbTiO(3) (PMN-PT) nanowires using a hydrothermal process. The unpoled single-crystal PMN-PT nanowires show a piezoelectric constant (d(33)) up to 381 pm/V, with an average value of 373 ± 5 pm/V. This is about 15 times higher than the maximum reported value of 1-D ZnO nanostructures and 3 times higher than the largest reported value of 1-D PZT nanostructures. These PMN-PT nanostructures are of good potential being used as the fundamental building block for higher power nanogenerators, high sensitivity nanosensors, and large strain nanoactuators.  相似文献   

6.
Sn-doped rutile TiO2 nanowires were synthesized by a thermal reactive evaporation route. Field emission scanning electron microscopy (FESEM) imaging reveals that the Sn-doped TiO2 nanowires exhibited diameters of 80-150 nm and 2-3 microns in length. High-resolution transmission electron microscopy (HRTEM) imaging makes it possible to observe that Sn-doped TiO2 nanowires show a certain lattices fringe of approximately 0.32 nm, which demonstrates that the nanowires are single crystalline with rutile structure and grow along the [110] axis. Cathodoluminescence (CL) reflected that on the surface of Sn-doped TiO2 nanowires, many oxygen vacancies and defect states were formed during the crystal growth. These defect states raised a broad emission peak around the red-orange band. The ethanol sensing properties of Sn-doped rutile TiO2 nanowires at a temperature of 190 degrees C for the ethanol concentrations of 50, 100, 150, 200, 400, 500, and 600 ppm, correspond to the sensor' sensitivity of 7, 12, 18, 19, 23, and 26%, respectively. The sensitivity increased with an increase in the ethanol concentration. As-synthesized TiO2 nanowires revealed a turn-on field, approximately 5.1 V/microm, at a current density of 1 microAcm(-2).  相似文献   

7.
SOI based wrap-gate silicon nanowire FETs are fabricated through electron beam lithography and wet etching. Dry thermal oxidation is used to further reduce the patterned fins cross section and transfer them into nanowires. Silicon nanowire FETs with different nanowire widths varying from 60 nm to 200 nm are fabricated and the number of the nanowires contained in a channel is also varied. The on-current (I(ON)) and off-current (I(OFF)) of the fabricated silicon nanowire FET are 0.59 microA and 0.19 nA respectively. The subthreshold swing (SS) and the drain induced barrier lowering are 580 mV/dec and 149 mV/V respectively due to the 30 nm thick gate oxide and 10(15) cm(-3) lightly doped silicon nanowire channel. The nanowire width dependence of SS is shown and attributed to the fact that the side-gate parts of a wrap gate play a more effectual role as the nanowires in a channel get narrower. It seems the nanowire number in a channel has no effect on SS because the side-gate parts fill in the space between two adjacent nanowires.  相似文献   

8.
在450K,pH值为11的条件下,以SbCl3,和Na2TeO3粉体为原料,用水热法制备了Sb2Te3纳米线。X-射线衍射(XRD)分析表明,所制的的材料为Sb2Te3,透射电镜(TEM)观察到Sb2Te3纳米线直径约为20nm,长度在200~600nm之间,并且自然平行密排成六边形纳米片状;然而在450K,pH值为13的条件下,制备出的产物则为完整的纳米片。扫描电镜(TEM)分析发现纳米线延(015)方向生长。差热测试得到Sb2Te3纳米线的熔点为727.5K。红外光谱的进一步研究表明,由Sb2Te3纳米线编织成的纳米片结构要优于整体生长成的纳米片,并就Sb2Te3纳米线的生长机理进行了初步推测。  相似文献   

9.
The optical properties of electrodeposited zinc copper telluride (ZnCuTe) ternary nanowires on ITO substrate using polycarbonate membrane (Whatman) of diameter 200,100 and 50?nm have been studied and reported in this paper. Scanning electron microscopy confirmed the formation of the standing nanowires having uniform diameter equal to the diameter of the template used. UV–vis absorption and photoluminescence (PL) spectroscopy were used for optical studies. The optical band gaps of 200, 100 and 50?nm have been calculated as 3.19, 3.39 and 3.57?eV, respectively using UV–vis spectroscopy. The UV–visible absorption spectrometry reveals the absorption spectra of 200, 100 and 50?nm shows a blue shift. UV–visible absorption depicts that the band gap increases with decrease in the diameter size of the nanowires. Several broad emission lines have been observed over a wide wavelength range (390–690?nm) of visible light spectrum in the PL spectra of ZnCuTe nanowires of diameter 200, 100 and 50?nm. A good emission peak at around 615?nm has been observed in all nanowires.  相似文献   

10.
The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO(4) within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40-90 nm in thickness, 150-580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to -122 μV/K (310 K) for nanowires and up to -57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3.  相似文献   

11.
This study aims to synthesize lead-free ferroelectric material, (Bi(1/2)Na(1/2))TiO3 using the Liquid Sprayed Mist Chemical Vapor Deposition (LSMCVD) technique. The mist of precursor solution was vaporized and deposited on two different substrates of Si(100) and (111)Pt/TiO2/SiO2/Si(100) in an oxygen atmosphere. The deposition temperature and time were varied in the range of 400-600 degrees C and 30-90 min. (Bi(1/2)Na(1/2))TiO3 thin film had preferred orientations of (110). The thickness of the thin film deposited was 35-162 nm. The remnant polarization (2Pr) and the dielectric constant were 4.6-16.8 microC/cm2, 325-350, respectively.  相似文献   

12.
Mai L  Xu L  Han C  Xu X  Luo Y  Zhao S  Zhao Y 《Nano letters》2010,10(11):4750-4755
Ultralong hierarchical vanadium oxide nanowires with diameter of 100-200 nm and length up to several millimeters were synthesized using the low-cost starting materials by electrospinning combined with annealing. The hierarchical nanowires were constructed from attached vanadium oxide nanorods of diameter around 50 nm and length of 100 nm. The initial and 50th discharge capacities of the ultralong hierarchical vanadium oxide nanowire cathodes are up to 390 and 201 mAh/g when the lithium ion battery cycled between 1.75 and 4.0 V. When the battery was cycled between 2.0 and 4.0 V, the initial and 50th discharge capacities of the nanowire cathodes are 275 and 187 mAh/g. Compared with self-aggregated short nanorods synthesized by hydrothermal method, the ultralong hierarchical vanadium oxide nanowires exhibit much higher capacity. This is due to the fact that self-aggregation of the unique nanorod-in-nanowire structures have been greatly reduced because of the attachment of nanorods in the ultralong nanowires, which can keep the effective contact areas of active materials, conductive additives, and electrolyte large and fully realize the advantage of nanomaterial-based cathodes. This demonstrates that ultralong hierarchical vanadium oxide nanowire is one of the most favorable nanostructures as cathodes for improving cycling performance of lithium ion batteries.  相似文献   

13.
Sb(2)S(3)-sensitized mesoporous-TiO(2) solar cells using several conjugated polymers as hole-transporting materials (HTMs) are fabricated. We found that the cell performance was strongly correlated with the chemical interaction at the interface of Sb(2)S(3) as sensitizer and the HTMs through the thiophene moieties, which led to a higher fill factor (FF), open-circuit voltage (V(oc)), and short-circuit current density (J(sc)). With the application of PCPDTBT (poly(2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)) as a HTM in a Sb(2)S(3)-sensitized solar cell, overall power conversion efficiencies of 6.18, 6.57, and 6.53% at 100, 50, and 10% solar irradiation, respectively, were achieved with a metal mask.  相似文献   

14.
ZnSe-core/V2O5-shell nanowires were synthesized by the thermal evaporation of ZnSe powders on gold-coated Si (100) substrates followed by the sputter depositon of V2O5. Scanning electron microscopic images showed that the core-shell nanowires were a few tens to a few hundreds of nanometers in diameter and a few hundreds of micrometers in length. Transmission electron microscopy and X-ray diffraction analyses revealed that the core and shell of the core-shell nanowires were single crystal wurtzite-structured ZnSe and amorphous V2O5, respectively. Photoluminescence measurement showed that the core-shell nanowires as-synthesized or annealed in an oxidative atmosphere had a green emission band centered at around 520 nm whereas the as-synthesized ZnSe nanowires and the ZnSe-core/V2O5-shell nanowires annealed in a reducing atmosphere had a yellow emission band centered at around 590 nm. Our results also showed that V2O5 capping with an optimal thickness and subsequent annealing in a reducing atmosphere could significantly enhance the emission intensity of the ZnSe nanowires. In addition, the origins of the enhancement in intensity and the blue shift of the major emission by V2O5 capping are discussed.  相似文献   

15.
We report on the fabrication of ferroelectric BaTiO3 thin films on titanium substrates using pulsed laser deposition and their microstructures and properties. Electron microscopy studies reveal that BaTiO3 films are composed of crystalline assemblage of nanopillars with average cross sections from 100 nm to 200 nm. The BaTiO3 films have good interface structures and strong adhesion with respect to Ti substrates by forming a rutile TiO2 intermediate layer with a gradient microstructure. The room temperature ferroelectric polarization measurements show that the as-deposited BTO films possess nearly the same spontaneous polarization as the bulk BTO ceramics indicating formation of ferroelectric domains in the films. Successful fabrication of such ferroelectric films on Ti has significant importance for the development of new applications such as structural health monitoring spanning from aerospace to civil infrastructure. The work can be extended to integrate other ferroelectric oxide films with various promising properties to monitor the structural health of materials.  相似文献   

16.
Wang G  Wang H  Ling Y  Tang Y  Yang X  Fitzmorris RC  Wang C  Zhang JZ  Li Y 《Nano letters》2011,11(7):3026-3033
We report the first demonstration of hydrogen treatment as a simple and effective strategy to fundamentally improve the performance of TiO(2) nanowires for photoelectrochemical (PEC) water splitting. Hydrogen-treated rutile TiO(2) (H:TiO(2)) nanowires were prepared by annealing the pristine TiO(2) nanowires in hydrogen atmosphere at various temperatures in a range of 200-550 °C. In comparison to pristine TiO(2) nanowires, H:TiO(2) samples show substantially enhanced photocurrent in the entire potential window. More importantly, H:TiO(2) samples have exceptionally low photocurrent saturation potentials of -0.6 V vs Ag/AgCl (0.4 V vs RHE), indicating very efficient charge separation and transportation. The optimized H:TiO(2) nanowire sample yields a photocurrent density of ~1.97 mA/cm(2) at -0.6 V vs Ag/AgCl, in 1 M NaOH solution under the illumination of simulated solar light (100 mW/cm(2) from 150 W xenon lamp coupled with an AM 1.5G filter). This photocurrent density corresponds to a solar-to-hydrogen (STH) efficiency of ~1.63%. After eliminating the discrepancy between the irradiance of the xenon lamp and solar light, by integrating the incident-photon-to-current-conversion efficiency (IPCE) spectrum of the H:TiO(2) nanowire sample with a standard AM 1.5G solar spectrum, the STH efficiency is calculated to be ~1.1%, which is the best value for a TiO(2) photoanode. IPCE analyses confirm the photocurrent enhancement is mainly due to the improved photoactivity of TiO(2) in the UV region. Hydrogen treatment increases the donor density of TiO(2) nanowires by 3 orders of magnitudes, via creating a high density of oxygen vacancies that serve as electron donors. Similar enhancements in photocurrent were also observed in anatase H:TiO(2) nanotubes. The capability of making highly photoactive H:TiO(2) nanowires and nanotubes opens up new opportunities in various areas, including PEC water splitting, dye-sensitized solar cells, and photocatalysis.  相似文献   

17.
We report a systematic study of carrier dynamics in Al(x)Ga(1-x)As-passivated GaAs nanowires. With passivation, the minority carrier diffusion length (L(diff)) increases from 30 to 180 nm, as measured by electron beam induced current (EBIC) mapping, and the photoluminescence (PL) lifetime increases from sub-60 ps to 1.3 ns. A 48-fold enhancement in the continuous-wave PL intensity is observed on the same individual nanowire with and without the Al(x)Ga(1-x)As passivation layer, indicating a significant reduction in surface recombination. These results indicate that, in passivated nanowires, the minority carrier lifetime is not limited by twin stacking faults. From the PL lifetime and minority carrier diffusion length, we estimate the surface recombination velocity (SRV) to range from 1.7 × 10(3) to 1.1 × 10(4) cm·s(-1), and the minority carrier mobility μ is estimated to lie in the range from 10.3 to 67.5 cm(2) V(-1) s(-1) for the passivated nanowires.  相似文献   

18.
Measurements of the conversion efficiency of second-harmonic generation in KTP (KTiOPO(4)) by the use of type I phase matching for different fundamental wavelengths of a mode-locked picosecond Ti:sapphire laser are presented. The observed phase matching angles are in agreement with the calculated phase matching curves. At a fundamental wavelength of 834 nm and an intensity of 100 MW/cm(2) the conversion efficiency is 4% at maximum, and the corresponding effective nonlinear coefficient d(eff) is equal to 0.32 pm/V. The experimental values of d(eff) are related to d(11) (= 0.46 pm/V) of quartz and are in line with the predictions.  相似文献   

19.
(100)-oriented 0.462Pb(Zn1/3Nb2/3)O3–0.308Pb(Mg1/3Nb2/3)O3–0.23PbTiO3 (PZN-PMN-PT) perovskite ferroelectric thin films were prepared on La0.7Sr0.3MnO3/LaAlO3 (LSMO/LAO) substrate via a chemical solution deposition route. The perovskite LSMO electrode was found to effectively suppress the pyrochlore phase while promote the growth of the perovskite phase in the PZN-PMN-PT film. The film annealed at 700 °C exhibited a high dielectric constant of 2130 at 1 kHz, a remnant polarization, 2Pr, of 29.8 μC/cm2, and a low leakage current density of 7.2 × 10− 7 A/cm2 at an applied field of 200 kV/cm. The ferroelectric polarization was fatigue-free at least up to 1010 cycles. Piezoelectric coefficient, d33, of 48 pm/V was also demonstrated. The results showed that much superior properties could be achieved with the PZN-PMN-PT thin films on the solution derived LSMO electrode than on Pt electrode by sputtering.  相似文献   

20.
Large quantities of indium nitride (InN) nanowires are synthesized by the in situ nitriding of indium oxide (In(2)O(3)) powders in an ammonia (NH(3)) flux. Tens of milligrams of nanowires are obtained in one batch. Every 100 mg of In(2)O(3) starting powder can produce up to 65 mg of InN nanowires under the optimized conditions. The synthesized nanowires grow along the [001] direction with excellent crystallinity. They are of high purity and are 30-50 microm in length with an almost uniform diameter of about 100 nm. Photoluminescence measurements of the nanowires exhibit a strong peak at 707 nm. An optical bandgap of about 1.7 eV is estimated based on the absorption spectrum. The experimental results also demonstrate that the approach of nitriding In(2)O(3) powders in situ is feasible for the synthesis of high-purity InN nanowires in large quantities, with good reproducibility and without catalyst materials. The synthesis of InN nanowires in large quantities would be of benefit to the further study and understanding of their intrinsic properties, as well as being advantageous for their potential application in nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号