首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Searching a Polygonal Region by a Boundary Searcher   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper considers the problem of planning the motion of a searcher in a polygonal region to eventually"see"an intruder that is unpredictable and capable of moving arbitrarily fast.A searcher is called the boundary searcher if he continuously moves on the polygon boundary and can see only along the rays of the flashlights he holds at a time. We present necessary and sufficient conditions for an n-sided polygon to be searchable by a boundary searcher.Based on our characterization,the equivalence of the ...  相似文献   

2.
We revisit the problem of indexing a string S[1..n] to support finding all substrings in S that match a given pattern P[1..m] with at most k errors. Previous solutions either require an index of size exponential in k or need Ω(m k ) time for searching. Motivated by the indexing of DNA, we investigate space efficient indexes that occupy only O(n) space. For k=1, we give an index to support matching in O(m+occ+log nlog log n) time. The previously best solution achieving this time complexity requires an index of O(nlog n) space. This new index can also be used to improve existing indexes for k≥2 errors. Among others, it can support 2-error matching in O(mlog nlog log n+occ) time, and k-error matching, for any k>2, in O(m k−1log nlog log n+occ) time.  相似文献   

3.
Parallel integer sorting and simulation amongst CRCW models   总被引:1,自引:0,他引:1  
 In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√log n) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log log n); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain an O(log n/log log n+√log n (log log m− log log n)) time algorithm for sorting n integers from the set {0,…, m−1}, mn, with a processor-time product of O(n log log m log log n) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takes O(log n/log log n) time on an allocated PRAM of size n. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r log n/(log r+log log n)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of size n of r-slow virtual processors (one processor simulates r processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n log n/log log n) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in an O(log N/log log N) time algorithm for (stable) sorting of n integers from the set {0,…, m−1} with n-processors on a COMMON CRCW PRAM; here N=max(n, m). In particular if, m=n O(1) , then sorting takes Θ(log n/log log n) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT is O(n(log log n)2). Algorithm for COMMON uses n processors. Received August 13, 1992/June 30, 1995  相似文献   

4.
The paper addresses the problem of multi-slot just-in-time scheduling. Unlike the existing literature on this subject, it studies a more general criterion—the minimization of the schedule makespan rather than the minimization of the number of slots used by schedule. It gives an O(nlog 2 n)-time optimization algorithm for the single machine problem. For arbitrary number of m>1 identical parallel machines it presents an O(nlog n)-time optimization algorithm for the case when the processing time of each job does not exceed its due date. For the general case on m>1 machines, it proposes a polynomial time constant factor approximation algorithm.  相似文献   

5.
Y. Nekrich 《Algorithmica》2007,49(2):94-108
In this paper we present new space efficient dynamic data structures for orthogonal range reporting. The described data structures support planar range reporting queries in time O(log n+klog log (4n/(k+1))) and space O(nlog log n), or in time O(log n+k) and space O(nlog  ε n) for any ε>0. Both data structures can be constructed in O(nlog n) time and support insert and delete operations in amortized time O(log 2 n) and O(log nlog log n) respectively. These results match the corresponding upper space bounds of Chazelle (SIAM J. Comput. 17, 427–462, 1988) for the static case. We also present a dynamic data structure for d-dimensional range reporting with search time O(log  d−1 n+k), update time O(log  d n), and space O(nlog  d−2+ε n) for any ε>0. The model of computation used in our paper is a unit cost RAM with word size log n. A preliminary version of this paper appeared in the Proceedings of the 21st Annual ACM Symposium on Computational Geometry 2005. Work partially supported by IST grant 14036 (RAND-APX).  相似文献   

6.
The two dimensional range minimum query problem is to preprocess a static m by n matrix (two dimensional array) A of size N=mn, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between the space and query time of the problem. We show that every algorithm enabled to access A during the query and using a data structure of size O(N/c) bits requires Ω(c) query time, for any c where 1≤cN. This lower bound holds for arrays of any dimension. In particular, for the one dimensional version of the problem, the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits which can be preprocessed in O(N) time to support O(clog 2 c) query time. For c=O(1), this is the first O(1) query time algorithm using a data structure of optimal size O(N) bits. For the case where queries can not probe A, we give a data structure of size O(N⋅min {m,log n}) bits with O(1) query time, assuming mn. This leaves a gap to the space lower bound of Ω(Nlog m) bits for this version of the problem.  相似文献   

7.
Let P be a set of n weighted points. We study approximation algorithms for the following two continuous facility-location problems. In the first problem we want to place m unit disks, for a given constant m≥1, such that the total weight of the points from P inside the union of the disks is maximized. We present algorithms that compute, for any fixed ε>0, a (1−ε)-approximation to the optimal solution in O(nlog n) time. In the second problem we want to place a single disk with center in a given constant-complexity region X such that the total weight of the points from P inside the disk is minimized. Here we present an algorithm that computes, for any fixed ε>0, in O(nlog 2 n) expected time a disk that is, with high probability, a (1+ε)-approximation to the optimal solution. A preliminary version of this work has appeared in Approximation and Online Algorithms—WAOA 2006, LNCS, vol. 4368.  相似文献   

8.
The diameter of a set P of n points in ℝ d is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3-dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is smaller than 1 requires Ω(nlog n) time in the algebraic computation tree model. It shows that the O(nlog n) time algorithm of Ramos for computing the diameter of a point set in ℝ3 is optimal for computing the diameter of a 3-polytope. We also give a linear time reduction from Hopcroft’s problem of finding an incidence between points and lines in ℝ2 to the diameter problem for a point set in ℝ7.  相似文献   

9.
Fast Algorithms for the Density Finding Problem   总被引:1,自引:0,他引:1  
We study the problem of finding a specific density subsequence of a sequence arising from the analysis of biomolecular sequences. Given a sequence A=(a 1,w 1),(a 2,w 2),…,(a n ,w n ) of n ordered pairs (a i ,w i ) of numbers a i and width w i >0 for each 1≤in, two nonnegative numbers , u with u and a number δ, the Density Finding Problem is to find the consecutive subsequence A(i *,j *) over all O(n 2) consecutive subsequences A(i,j) with width constraint satisfying w(i,j)=∑ r=i j w r u such that its density is closest to δ. The extensively studied Maximum-Density Segment Problem is a special case of the Density Finding Problem with δ=∞. We show that the Density Finding Problem has a lower bound Ω(nlog n) in the algebraic decision tree model of computation. We give an algorithm for the Density Finding Problem that runs in optimal O(nlog n) time and O(nlog n) space for the case when there is no upper bound on the width of the sequence, i.e., u=w(1,n). For the general case, we give an algorithm that runs in O(nlog 2 m) time and O(n+mlog m) space, where and w min=min  r=1 n w r . As a byproduct, we give another O(n) time and space algorithm for the Maximum-Density Segment Problem. Grants NSC95-2221-E-001-016-MY3, NSC-94-2422-H-001-0001, and NSC-95-2752-E-002-005-PAE, and by the Taiwan Information Security Center (TWISC) under the Grants NSC NSC95-2218-E-001-001, NSC95-3114-P-001-002-Y, NSC94-3114-P-001-003-Y and NSC 94-3114-P-011-001.  相似文献   

10.
Suffix trees and suffix arrays are fundamental full-text index data structures to solve problems occurring in string processing. Since suffix trees and suffix arrays have different capabilities, some problems are solved more efficiently using suffix trees and others are solved more efficiently using suffix arrays. We consider efficient index data structures with the capabilities of both suffix trees and suffix arrays without requiring much space. When the size of an alphabet is small, enhanced suffix arrays are such index data structures. However, when the size of an alphabet is large, enhanced suffix arrays lose the power of suffix trees. Pattern searching in an enhanced suffix array takes O(m|Σ|) time while pattern searching in a suffix tree takes O(mlog |Σ|) time where m is the length of a pattern and Σ is an alphabet. In this paper, we present linearized suffix trees which are efficient index data structures with the capabilities of both suffix trees and suffix arrays even when the size of an alphabet is large. A linearized suffix tree has all the functionalities of the enhanced suffix array and supports the pattern search in O(mlog |Σ|) time. In a different point of view, it can be considered a practical implementation of the suffix tree supporting O(mlog |Σ|)-time pattern search. In addition, we also present two efficient algorithms for computing suffix links on the enhanced suffix array and the linearized suffix tree. These are the first algorithms that run in O(n) time without using the range minima query. Our experimental results show that our algorithms are faster than the previous algorithms.  相似文献   

11.
Tree Expressions for Information Systems   总被引:1,自引:0,他引:1       下载免费PDF全文
The discernibility matrix is one of the most important approaches to computing positive region, reduct, core and value reduct in rough sets. The subject of this paper is to develop a parallel approach of it, called "tree expression". Its computational complexity for positive region and reduct is O(m^2 × n) instead of O(m × n^2) in discernibility-matrix-based approach, and is not over O(n^2) for other concepts in rough sets, where rn and n are the numbers of attributes and objects respectively in a given dataset (also called an "information system" in rough sets). This approach suits information systems with n ≥ m and containing over one million objects.  相似文献   

12.
We consider a novel class of art gallery problems inspired by wireless localization that has recently been introduced by Eppstein, Goodrich, and Sitchinava. Given a simple polygon P, place and orient guards each of which broadcasts a unique key within a fixed angular range. In contrast to the classical art gallery setting, broadcasts are not blocked by the edges of P. At any point in the plane one must be able to tell whether or not one is located inside P only by looking at the set of keys received. In other words, the interior of the polygon must be described by a monotone Boolean formula composed from the keys. We improve both upper and lower bounds for the general problem where guards may be placed anywhere by showing that the maximum number of guards to describe any simple polygon on n vertices is between roughly \frac35n\frac{3}{5}n and \frac45n\frac{4}{5}n . A guarding that uses at most \frac45n\frac{4}{5}n guards can be obtained in O(nlog n) time. For the natural setting where guards may be placed aligned to one edge or two consecutive edges of P only, we prove that n−2 guards are always sufficient and sometimes necessary.  相似文献   

13.
Let a communication network be modeled by an undirected graph G=(V,E) of n nodes and m edges, and assume that edges are controlled by selfish agents. In this paper we analyze the problem of designing a truthful mechanism for computing one of the most popular structures in communication networks, i.e., the single-source shortest paths tree. More precisely, we will study several realistic scenarios, in which each agent can own either a single or multiple edges of G. In particular, for the single-edge case, we will show that: (i) in the classic utilitarian case, the problem can be solved efficiently in O(mnlog α(m,n)) time, where α(m,n) is the inverse of the Ackermann’s function; (ii) in a meaningful non-utilitarian case, namely that in which agents’ valuation functions only depend on the edge lengths, the problem can be solved in O(m+nlog n) time. Conversely, for the multiple-edges case, we will show in the utilitarian case an O(mP+nPlog n) time truthful mechanism, where P=O(n) denotes the number of agents participating in the solution, while in the same non-utilitarian case we will prove a general lower bound to the approximation ratio that can be achieved by any truthful mechanism, by showing that no c-approximate mechanism can exist, for any fixed . Work partially supported by the Research Project GRID.IT, funded by the Italian Ministry of Education, University and Research. Part of the results herein contained was presented at the 11th International Euro-Par Conference (Euro-Par’05), Lisbon, Portugal, 2005.  相似文献   

14.
Approximate string matching is about finding a given string pattern in a text by allowing some degree of errors. In this paper we present a space efficient data structure to solve the 1-mismatch and 1-difference problems. Given a text T of length n over an alphabet A, we can preprocess T and give an -bit space data structure so that, for any query pattern P of length m, we can find all 1-mismatch (or 1-difference) occurrences of P in O(|A|mlog log n+occ) time, where occ is the number of occurrences. This is the fastest known query time given that the space of the data structure is o(nlog 2 n) bits. The space of our data structure can be further reduced to O(nlog |A|) with the query time increasing by a factor of log  ε n, for 0<ε≤1. Furthermore, our solution can be generalized to solve the k-mismatch (and the k-difference) problem in O(|A| k m k (k+log log n)+occ) and O(log  ε n(|A| k m k (k+log log n)+occ)) time using an -bit and an O(nlog |A|)-bit indexing data structures, respectively. We assume that the alphabet size |A| is bounded by for the -bit space data structure.  相似文献   

15.
We study the communication primitives of broadcasting (one-to-all communication) and gossiping (all-to-all communication) in known topology radio networks, i.e., where for each primitive the schedule of transmissions is precomputed based on full knowledge about the size and the topology of the network. We show that gossiping can be completed in time units in any radio network of size n, diameter D, and maximum degree Δ=Ω(log n). This is an almost optimal schedule in the sense that there exists a radio network topology, specifically a Δ-regular tree, in which the radio gossiping cannot be completed in less than units of time. Moreover, we show a schedule for the broadcast task. Both our transmission schemes significantly improve upon the currently best known schedules by Gąsieniec, Peleg, and Xin (Proceedings of the 24th Annual ACM SIGACT-SIGOPS PODC, pp. 129–137, 2005), i.e., a O(D+Δlog n) time schedule for gossiping and a D+O(log 3 n) time schedule for broadcast. Our broadcasting schedule also improves, for large D, a very recent O(D+log 2 n) time broadcasting schedule by Kowalski and Pelc. A preliminary version of this paper appeared in the proceedings of ISAAC’06. F. Cicalese supported by the Sofja Kovalevskaja Award 2004 of the Alexander von Humboldt Stiftung. F. Manne and Q. Xin supported by the Research Council of Norway through the SPECTRUM project.  相似文献   

16.
Given an alphabet Σ={1,2,…,|Σ|} text string T∈Σ n and a pattern string P∈Σ m , for each i=1,2,…,nm+1 define L p (i) as the p-norm distance when the pattern is aligned below the text and starts at position i of the text. The problem of pattern matching with L p distance is to compute L p (i) for every i=1,2,…,nm+1. We discuss the problem for d=1,2,∞. First, in the case of L 1 matching (pattern matching with an L 1 distance) we show a reduction of the string matching with mismatches problem to the L 1 matching problem and we present an algorithm that approximates the L 1 matching up to a factor of 1+ε, which has an O(\frac1e2nlogmlog|S|)O(\frac{1}{\varepsilon^{2}}n\log m\log|\Sigma|) run time. Then, the L 2 matching problem (pattern matching with an L 2 distance) is solved with a simple O(nlog m) time algorithm. Finally, we provide an algorithm that approximates the L matching up to a factor of 1+ε with a run time of O(\frac1enlogmlog|S|)O(\frac{1}{\varepsilon}n\log m\log|\Sigma|) . We also generalize the problem of String Matching with mismatches to have weighted mismatches and present an O(nlog 4 m) algorithm that approximates the results of this problem up to a factor of O(log m) in the case that the weight function is a metric.  相似文献   

17.
We consider the problem of fitting a step function to a set of points. More precisely, given an integer k and a set P of n points in the plane, our goal is to find a step function f with k steps that minimizes the maximum vertical distance between f and all the points in P. We first give an optimal Θ(nlog n) algorithm for the general case. In the special case where the points in P are given in sorted order according to their x-coordinates, we give an optimal Θ(n) time algorithm. Then, we show how to solve the weighted version of this problem in time O(nlog 4 n). Finally, we give an O(nh 2log n) algorithm for the case where h outliers are allowed. The running time of all our algorithms is independent of k.  相似文献   

18.
We design compact and responsive kinetic data structures for detecting collisions between n convex fat objects in 3-dimensional space that can have arbitrary sizes. Our main results are:
(i)  If the objects are 3-dimensional balls that roll on a plane, then we can detect collisions with a KDS of size O(nlog n) that can handle events in O(log 2 n) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories.
(ii)  If the objects are convex fat 3-dimensional objects of constant complexity that are free-flying in ℝ3, then we can detect collisions with a KDS of O(nlog 6 n) size that can handle events in O(log 7 n) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories. If the objects have similar sizes then the size of the KDS becomes O(n) and events can be handled in O(log n) time.
M.A. and S.-H.P. were supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 612.065.307. M.d.B. was supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 639.023.301.  相似文献   

19.
Yijie Han 《Algorithmica》2008,51(4):428-434
We present an O(n 3(log log n/log n)5/4) time algorithm for all pairs shortest paths. This algorithm improves on the best previous result of O(n 3/log n) time. Research supported in part by NSF grant 0310245.  相似文献   

20.
 The problem is to let n processes concurrently and repeatedly search for free addresses in a range of m addresses. The search must be wait-free: a searching process finds an address in a bounded number of steps. Three solutions are presented. The first one has large atomic actions. The second one is only correct if m≧(r+1) ⋅ n where r is the maximum number of used addresses. The third solution is always partially correct. It is wait-free if m>r+2 ⋅ n. This solution has a worst-case waiting time quadratic in n and an amortized waiting time linear in n, even linear in the number of active processes. Received February 2, 1994/January 24, 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号