首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photochemical formation of hydroxyl radical from effluent organic matter   总被引:1,自引:0,他引:1  
The photochemical formation of hydroxyl radical (HO?) from effluent organic matter (EfOM) was evaluated using three bulk wastewater samples collected at different treatment facilities under simulated sunlight. For the samples studied, the formation rates of HO?(R(HO?)) were obtained from the formation rate of phenol following the hydroxylation of benzene. The values of R(HO?) ranged from 2.3 to 3.8 × 10(-10) M s(-1) for the samples studied. The formation rate of HO? from nitrate photolysis (R(NO3)(HO?)) was determined to be 3.0 × 10(-7) M(HO)? M(NO3)(-1) s(-1). The HO? production rate from EfOM (R(EfOM)(HO?)) ranged from 0.76 to 1.3 × 10(-10) M s(-1). For the wastewater samples studied, R(EfOM)(HO?) varied from 1.5 to 2.4 × 10(-7) M(HO)? M(C)(-1) (s-1) on molarcarbon basis, which was close to HO? production from nitrate photolysis. The apparent quantum yield for the formation of HO? from nitrate (Φ(NO3-HO?)(a)) was determined as 0.010 ± 0.001 for the wavelength range 290-400 nm in ultrapure water. The apparent quantum yield for HO? formation in EfOM (Φ(EfOM-HO?)(a)) ranged from 6.1 to 9.8 × 10(-5), compared to 2.99 to 4.56 × 10(-5) for organic matter (OM) isolates. The results indicate that wastewater effluents could produce significant concentrations of HO?, as shown by potential higher nitrate levels and relatively higher quantum yields of HO? formation from EfOM.  相似文献   

2.
3.
Absolute second-order rate constants for the reaction between the hydroxyl radical (*OH) and eight water samples containing non-isolated effluent organic matter (EfOM) collected at different wastewater and reclamation sites were measured by electron pulse radiolysis. The measured rate constants ranged from 0.27 to 1.21 x 10(9) Mc(-1) s(-1), with an average value of 0.86 (+/-0.35) x 10(9) Mc(-1) s(-1). These absolute values were 3-5 times faster than previously reported values using natural organic matter and wastewater isolates. The obtained rate constants were correlated (R2 > 0.99) to bulk EfOM properties through an empirical equation that included terms relating to the polarity, apparent molecular weight, and fluorescence index of the effluent organic matter. The obtained data were used to model steady state *OH concentrations during UV advanced oxidation. The steady-state *OH concentration was lower than that obtained using previously reported values for the reaction with dissolved organic matter, indicating that accurate measurement of reaction rate constants at specific sites would greatly improve the design and prediction of the removal of organic contaminants. These results will improve the ability of researchers to accurately model scavenging capacities during the advanced oxidation processtreatment of wastewaters.  相似文献   

4.
Epidemiological studies suggest exposure to airborne particles is responsible for a wide range of adverse health effects, potentially arising from particle-induced oxidative stress. A highly sensitive fluorescence method was employed to measure the production of hydroxyl radical by a broad range of particle types including urban dust, diesel particulate matter, coal fly ash, kaolinite, and silica. Little or no production of *OH was observed in the absence of an added electron donor or H202. In the presence of a biological electron donor (NADPH, 3 mM), the rate of *OH production (ROH) for 3 mg/mL of these particles varied from 23 nM s(-1) for diesel particulate matter (SRM 2975) to 0.20 nM s(-1) for coal fly ash (SRM 2689). No detectable *OH was produced by kaolinite or silica. Hydroxyl radical formation was eliminated under anaerobic conditions and in the presence of catalase, indicating that 02 and H202 are required for its generation. Partial inhibition of *OH formation by superoxide dismutase (SOD) was also observed in some cases, suggesting that superoxide (O2*-) is also involved. The metal chelator deferoxamine mesylate (DFX) in most cases suppressed *OH formation, but diethylenetriaminepentaacetic acid (DTPA) generally enhanced it, implicating metal ion reactions in OH generation as well. The dependence of ROH on NADPH concentration further implicates particle surface reactions in *OH formation. To our knowledge, these measurements provide the first quantitative estimate of ROH for a broad range of particle types.  相似文献   

5.
Pulse radiolysis experiments were conducted on dissolved organic matter (DOM) samples isolated as hydrophobic and hydrophilic acids and neutrals from different sources (i.e., stream, lake, wastewater treatment plant). Absolute bimolecular reaction rate constants for the reaction of hydroxyl radicals (*OH) with DOM (k*(OH), DOM) were determined. k*(OH, DOM) values are expressed as moles of carbon. Based on direct measurement of transient DOM radicals (DOM*) and competition kinetic techniques, both using pulse radiolysis, the k*(OH, DOM) value for a standard fulvic acid from the Suwannee River purchased from the International Humic Substances Society was (1.60 +/- 0.24) x 10(8) M(-1) s(-1). Both pulse radiolysis methods yielded comparable k*(OH, DOM) values. The k*(OH, DOM) values for the seven DOM isolates from different sources ranged from 1.39 x 10(8) M(-1) s(-1) to 4.53 x 10(8) M(-1) s(-1), and averaged 2.23 x 108 M(-1) s(-1) (equivalent to 1.9 x 10(4) (mgC/L)(-1) s(-1)). These values represent the first direct measurements of k*(OH, DOM,) and they compare well with literature values obtained via competition kinetic techniques during ozone or ultraviolet irradiation experiments. More polar, lower-molecular-weight DOM isolates from wastewater have higher k*(OH, DOM) values. In addition, the formation (microsecond time scale) and decay (millisecond time scale) of DOM* transients were observed for the first time. DOM* from hydrophobic acids exhibited broader absorbance spectra than transphilic acids, while wastewater DOM isolates had narrower DOM* spectra more skewed toward shorter wavelengths than did DOM* spectra for hydrophobic acids.  相似文献   

6.
Photochemical formation of reactive oxygen species from dissolved organic matter (DOM) is incompletely understood, especially in the case of hydroxyl radical (?OH) production. Many studies have used various probes to detect photochemically produced ?OH from DOM, but the fundamental reactions of these probes are not necessarily specific for free ?OH and may also detect lower-energy hydroxylation agents. In this study, two tests were applied that have previously been used as a diagnostic for the presence of free ?OH: methane quenching of ?OH and hydroxybenzoic acid (hBZA) product yields. Upon application of these two tests to a set of five DOM isolates, it was found that methane quenching and the hBZA ratio results were not necessarily consistent. Overall, the results provide compelling evidence that all isolates studied photochemically produce free ?OH. The hydroxylating acitivity of Elliot Soil Humic Acid and Pony Lake Fulvic Acid, however, also had a significant contribution from a photochemically generated hydroxylating agent that is lower in energy than free ?OH. Catalase quenching experiments were conducted to assess whether hydrogen peroxide was the immediate precursor to hydroxyl in these systems. In all cases, catalase addition slowed photohydroxylation of terephthalate, but the contribution of hydrogen peroxide photolysis was determined to be less than 50%.  相似文献   

7.
8.
The hydroxyl radical (HO(?)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(?) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(?) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(?) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.  相似文献   

9.
The iron oxide-catalyzed production of hydroxyl radical (*OH) from hydrogen peroxide (H2O2) has been used to oxidize organic contaminants in soils and groundwater. The goals of this study are to determine which factors control the generation rate of *OH (VOH) and to show that if VOH and the rate constants of the reactions of *OH with the system's constituents are known, the oxidation rate of a dissolved organic compound can be predicted. Using 14C-labeled formic acid as a probe, we measured VOH in pH 4 slurries of H2O2 and either synthesized ferrihydrite, goethite, or hematite or a natural iron oxide-coated quartzitic aquifer sand. In all of our experiments, VOH was proportional to the product of the concentrations of surface area of the iron oxide and H2O2, although different solids produced *OH at different rates. We used these results to develop a model of the decomposition rate of formic acid as a function of the initial formic acid and hydrogen peroxide concentrations and of the type and quantity of iron oxide. Our model successfully predicted the VOH and organic compound oxidation rates observed in our aquifer sand experiment and in a number of other studies but overpredicted VOH and oxidation rates in other cases, possibly indicating that unknown reactants are either interfering with *OH production or consuming *OH in these systems.  相似文献   

10.
Information about electron-transfer reactions of dissolved organic matter (DOM) is lacking. We determined electron acceptor and donor capacities (EAC and EDC) of a peat humic acid and an untreated peat DOM by electrochemical reduction and reduction with metallic Zn and H2S (EAC), and by oxidation with complexed ferric iron (EDC) at pH 6.5. DOC concentrations (10-100 mg L(-1)) and pH values (4.5-8) were varied in selected experiments. EAC reached up to 6.2 mequiv x (g C)(-1) and EDC reached up to 1.52 mequiv-(g C)(-1). EDC decreased with pH and conversion of chelated to colloidal iron, and the electron-transfer capacity (ETC) was controlled by the redox potential Eh of the reactant (ETC = 1.016x Eh - 0.138; R(2) = 0.87; p = 0.05). The kinetics could be adequately described by pseudo first-order rate laws, one or two DOM pools, and time constants ranging from 2.1 x 10(-3) d-1 to 1.9 x 10(-2) d(-1) for the fast pool. Reactions were completed after 24-160 h depending on the redox couple applied. The results indicate that DOM may act as a redox buffer over electrochemical potentials ranging from -0.9 to +1.0 V.  相似文献   

11.
Surface soil samples from Teide mountain (Canary Islands) have been analyzed for polychlorobiphenyls (PCBs), DDTs, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), and pentachlorobenzene. The samples were situated between 10 and 3400 m above sea level being distributed below, at, and above the permanent inversion layer system characteristic of the subtropical Atlantic. All OC concentrations were, in general, low when compared with the data from urban, agricultural, or woodland soils reported elsewhere. Typical ranges were 0.04-9.2, 0.01-40, 0.001-1, or 0.01-3.2 ng x g(-1) dry weight for total PCBs, DDTs, HCHs, or HCB, respectively. These compounds exhibited a high dependence from the soil total organic carbon (TOC), showing high coefficients in the log(OC) versus log(TOC) correlations. The slopes of the curve fitted straight lines were, in turn, highly correlated to the log-transformed octanol-air coefficients of the compounds. This overall OC distribution points to steady-state conditions for the concentrations of these compounds in these mountain soils, in equilibrium with TOC. The equilibrium conditions are reached, despite the restrictions to convective air movement associated to the permanent atmospheric inversion layer at these latitudes. In addition, the log-transformed TOC-normalized concentrations of most PCBs, HCB, and pentachlorobenzene exhibit a good correlation with the reciprocal of average annual atmospheric temperatures also showing a temperature dependence for their distribution in the high mountain system. The calculated pseudo-enthalpies for this dependence, 120-160 kJ x mol(-1), exhibit higher values than those of octanol-air phase change calculated from laboratory experiments in previous studies, 66-93 kJ x mol(-1). The difference suggests a higher affinity of OC to soils than that corresponding to simple adsorption mechanisms.  相似文献   

12.
13.
14.
The adsorption of natural organic matter (NOM) to the surfaces of natural colloids and engineered nanoparticles is known to strongly influence, and in some cases control, their surface properties and aggregation behavior. As a result, the understanding of nanoparticle fate, transport, and toxicity in natural systems must include a fundamental framework for predicting such behavior. Using a suite of gold nanoparticles (AuNPs) with different capping agents, the impact of surface functionality, presence of natural organic matter, and aqueous chemical composition (pH, ionic strength, and background electrolytes) on the surface charge and colloidal stability of each AuNP type was investigated. Capping agents used in this study were as follows: anionic (citrate and tannic acid), neutral (2,2,2-[mercaptoethoxy(ethoxy)]ethanol and polyvinylpyrrolidone), and cationic (mercaptopentyl(trimethylammonium)). Each AuNP type appeared to adsorb Suwannee River Humic Acid (SRHA) as evidenced by measurable decreases in zeta potential in the presence of 5 mg C L(-1) SRHA. It was found that 5 mg C L(-1) SRHA provided a stabilizing effect at low ionic strength and in the presence of only monovalent ions while elevated concentrations of divalent cations lead to enhanced aggregation. The colloidal stability of the NPs in the absence of NOM is a function of capping agent, pH, ionic strength, and electrolyte valence. In the presence of NOM at the conditions examined in this study, the capping agent is a less important determinant of stability, and the adsorption of NOM is a controlling factor.  相似文献   

15.
Atomic force microscopy (AFM) was used to characterize interactions between natural organic matter (NOM), and glass or bacteria. Poly(methacrylic acid) (PMA), soil humic Acid (SHA), and Suwannee River humic Acid (SRHA), were adsorbed to silica AFM probes. Adhesion forces (Fadh) for the interaction of organic-probes and glass slides correlated with organic molecular weight (MW), but not with radius of the organic aggregate (R), charge density (Q), or zeta potential (zeta). Two Pseudomonas aeruginosa strains with different lipopolysaccharides (LPS) were chosen: PAO1 (A+B+), whose LPS have common antigen (A-band) + O-antigen (B-band); and mutant AK1401 (A+B-). Fadh between bacteria and organics correlated with organic MW, R, and Q, but not zeta. PAO1 had lower Fadh with silica than NOM, which was attributed to negative charges from the B-band polymers causing electrostatic repulsion. AK1401 adhered stronger to silica than to the organics, perhaps because the absence of the B-band exposed underlying positively charged proteins. DLVO calculations could not explain the differences in the two bacteria or predict qualitative or quantitative trends in interaction forces in these systems. Molecular-level information from AFM studies can bring us closer to understanding the complex nature of bacterial-NOM interactions.  相似文献   

16.
17.
The assumptions behind the fluorescence quenching (FQ) method were thoroughly evaluated to assess its potential for quickly and accurately assessing the importance of hydrophobic organic contaminant-macromolecular organic carbon interactions in aquatic systems. Perylene was used as the probe molecule to avoid problems encountered with other fluorescent probes. Results from a wide range of wetland samples suggest that static quenching dominates, that other quenchers do not interfere with analyses, and that full quenching on sorption does not occur for all samples. The latter result indicates that the quantum yield of the sorbed probe must be accounted for in quantifying the magnitude of Kmoc values by FQ. Observed Kmoc values compared favorably with those measured by the solubility enhancement method. Overall, our results suggest that FQ can be used as a quick and reliable screening tool as long as precautions are taken to ensure the validity of the results.  相似文献   

18.
杨曦 《中国油脂》2020,45(10):35-40
以碱提酸沉法从美藤果饼中提取美藤果蛋白,并采用羟自由基和过氧自由基氧化体系对其进行不同程度的模拟氧化,通过分析羰基、巯基、溶解性、乳化性和起泡性的变化规律,探讨羟自由基和过氧自由基氧化对美藤果蛋白功能性质的影响。结果表明:两个体系中的自由基可使美藤果蛋白羰基含量显著增加,最大增幅分别为2.10倍和2.28倍;总巯基与游离巯基含量显著降低,总巯基最大降幅分别为25.75%和31.79%,游离巯基最大降幅分别为85.97%和83.33%;溶解性显著降低,最大降幅分别为46.92%和30.51%;乳化性与乳化稳定性先升高后降低,在双氧水(H2O2)和2,2'-盐酸脒基丙烷(AAPH)浓度均为1 mmol/L时达到最大;起泡性与泡沫稳定性先升高后降低,分别在H2O2浓度为5 mmol/L和AAPH浓度为3 mmol/L时达到最大。美藤果蛋白在羟自由基和过氧自由基氧化体系中均发生显著氧化,从而导致其功能性质改变。  相似文献   

19.
The reactions of Cl atoms and ClO radicals with CH3-SOCH3 (DMSO) have been studied using the discharge flow method with direct detection of DMSO, CO, and products by mass spectrometry. The absolute rate constant at room temperature measured for reaction 1, (CH3)2SO + Cl --> products, was k(1) = (1.7 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1). For reaction 2, (CH3)2SO + ClO --> products, only an upper limit could be established, k(2) < or = 6 x 10(-14) cm3 molecule(-1) s(-1) Reaction 1 has been found to proceed through adduct formation and further decomposition involving the cleavage of the C-S bound. The pressure effect on the Cl-DMSO reaction from 0.5 to 3 Torr was negligible, and the temperature dependence in the range 273-335 K was also very slight. The results obtained are related to previous studies of sulfur compounds, and the atmospheric implications are also discussed in relation to the homogeneous sinks of DMSO. Tropospheric lifetimes of DMSO based on average Cl and ClO concentrations and the measured rate constants have been calculated showing that the contribution of reaction 1 must be of minor relevance in the marine boundary layer. Reaction 2 is so slow that it does not play any role within the atmospheric sulfur chemistry.  相似文献   

20.
In soil and water, ferrihydrite frequently forms in the presence of dissolved organic matter. This disturbs crystal growth and gives rise to coprecipitation of ferrihydrite and organic matter. To compare the chemical fractionation of organic matter during coprecipitation with the fractionation involved in adsorption onto pristine ferrihydrite surfaces we prepared ferrihydrite-organic matter associations by adsorption and coprecipitation using (i) a forest-floor extract or (ii) a sulfonated lignin. The reaction products were studied by (13)C CPMAS NMR, FTIR, and analysis of hydrolyzable neutral polysaccharides. Relative to the original forest-floor extract, the ferrihydrite-associated organic matter was enriched in polysaccharides, especially when adsorption took place. Moreover, mannose and glucose were bound preferentially to ferrihydrite, while fucose, arabinose, xylose, and galactose accumulated in the supernatant. This fractionation of sugar monomers was more pronounced during coprecipitation and led to an enhanced ratio of (galactose + mannose)/(arabinose + xylose). Experiments with lignin revealed that the ferrihydrite-associated material was enriched in its aromatic components but had a lower ratio of phenolic C to aromatic C than the original lignin. A compositional difference between the adsorbed and coprecipitated lignin is obvious from a higher contribution of methoxy C in the coprecipitated material. Coprecipitated organic matter may thus differ in amount and composition from adsorbed organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号