首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用Gleeble-3500热模拟试验机对在变形温度500~650℃和应变速率0.001~1 s-1条件下的60NiTi合金进行热压缩变形,分析其热变形行为和显微组织,建立变形本构模型,绘制热加工图。结果表明,当压缩温度升高或应变速率降低时,峰值应力减小。合金的热变形激活能为327.89 k J/mol,热加工工艺参数为变形温度600~650℃和应变速率0.005~0.05 s-1。当变形温度升高时,合金的再结晶程度增大;当应变速率增大时,位错密度和孪晶数量增大,Ni3Ti相易于聚集;Ni3Ti析出相有利于诱发合金基体的动态再结晶。动态回复、动态再结晶和孪生是60NiTi合金热变形的主要机制。  相似文献   

2.
The flow behavior of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermo-mechanical equipment. Compression tests were performed in the temperature range of 340-500 °C and in the strain rate range of 0.001-10 s?1.The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature, and decreases with increasing temperature at a given imposed strain rate. The relationship between flow stress and strain rate and temperature was derived by analyzing the experimental data. The constitutive equation of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation can be described by the Arrhenius relationship of the hyperbolic sine form. The values of A, n, and α in the analytical expression of strain rate are fitted to be 1.49 × 1010 s?1, 7.504, and 0.0114 MPa?1, respectively. The hot deformation activation energy of the alloy during compression is 150.25 kJ/mol. The temperature and strain rate have great influences on microstructure evolution of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation. According to microstructure evolution, the dynamic flow softening is mainly caused by dynamic recovery and dynamic recrystallization in this present experiment.  相似文献   

3.
Hot deformation behavior and microstructure evolution of TC4 titanium alloy   总被引:1,自引:0,他引:1  
The hot deformation behavior of Ti-6Al-4V(TC4) titanium alloy was investigated in the temperature range from 650 °C to 950 °C with the strain rate ranging from 7.7×10-4 s-1 to 7.7×10-2 s-1.The hot tension test results indicate that the flow stress decreases with increasing the deformation temperature and increases with increasing the strain rate.XRD analysis result reveals that only deformation temperature affects the phase constitution.The microstructure evolution under different deformation conditions was characterized by TEM observation.For the deformation of TC4 alloy,the work-hardening is dominant at low temperature,while the dynamic recovery and dynamic re-crystallization assisted softening is dominant at high temperature.  相似文献   

4.
The flow stress behavior of spray-formed Al-9Mg-1.1Li-0.5Mn alloy was studied using thermal simulation tests on a Gleeble-3500 machine over deformation temperature range of 300-450 °C and strain rate of 0.01-10 s?1. The microstructural evolution of the alloy during the hot compression process was characterized by transmission electron microscopy (TEM) and electron back scatter diffractometry (EBSD). The results show that the flow stress behavior and microstructural evolution are sensitive to deformation parameters. The peak stress level, steady flow stress, dislocation density and amount of substructures of the alloy increase with decreasing deformation temperature and increasing strain rate. Conversely, the high angle grain boundary area increases, the grain boundary is in serrated shape and the dynamic recrystallization in the alloy occurs. The microstructure of the alloy is fibrous-like and the main softening mechanism is dynamic recovery during steady deformation state. The flow stress behavior can be represented by the Zener-Hollomon parameter Z in the hyperbolic sine equation with the hot deformation activation energy of 184.2538 kJ/mol. The constitutive equation and the hot processing map were established. The hot processing map exhibits that the optimum processing conditions for Al-9Mg-1.1Li-0.5Mn alloy are in deformation temperature range from 380 to 450 °C and strain rate range from 0.01 to 0.1 s?1.  相似文献   

5.
The hot deformation characteristics of as-forged Ti?3.5Al?5Mo?6V?3Cr?2Sn?0.5Fe?0.1B?0.1C alloy within a temperature range from 750 to 910 °C and a strain rate range from 0.001 to 1 s?1 were investigated by hot compression tests. The stress?strain curves show that the flow stress decreases with the increase of temperature and the decrease of strain rate. The microstructure is sensitive to deformation parameters. The dynamic recrystallization (DRX) grains appear while the temperature reaches 790 °C at a constant strain rate of 0.001 s?1 and strain rate is not higher than 0.1 s?1 at a constant temperature of 910 °C. The work-hardening rate θ is calculated and it is found that DRX prefers to happen at high temperature and low strain rate. The constitutive equation and processing map were obtained. The average activation energy of the alloy is 242.78 kJ/mol and there are few unstable regions on the processing map, which indicates excellent hot workability. At the strain rate of 0.1 s?1, the stress?strain curves show an abnormal shape where there are two stress peaks simultaneously. This can be attributed to the alternation of hardening effect, which results from the continuous dynamic recrystallization (CDRX) and the rotation of DRX grains, and dynamic softening mechanism.  相似文献   

6.
Hot deformation behavior of extrusion preform of the spray-formed Al–9.0Mg–0.5Mn–0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300–450 °C and strain rate range of 0.01–10 s?1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 °C and strain rate of 1 s?1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (>15°) was 34%. While increasing the deformation temperature to 400 °C and decreasing the strain rate to 0.1 s?1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al–9.0Mg–0.5Mn–0.1Ti alloy were in the deformation temperature range of 340–450 °C and the strain rate range of 0.01–0.1 s?1 with the power dissipation efficiency range of 38%–43%.  相似文献   

7.
用热模拟试验机研究了纯铂在真应变量为0.9、变形温度为550℃~950℃和应变速率为0.01~1 s~(-1)的热塑性变形行为,并对热压缩后的样品进行了金相观察和显微硬度测量。结果表明,纯铂的流变应力随变形温度的升高和应变速率的降低而降低;其热压缩变形过程中软化行为由变形温度和变形速率共同作用决定,一般以动态回复为主,而在低应变速率和高形变温度下以动态再结晶为主,动态再结晶发生造成的软化使纯铂样品的硬度迅速下降。利用Zener-Hollomon参数方程获得了热塑性变形流变应力本构方程,得到纯铂的热变形激活能为208.51 kJ/mol,流变应力拟合公式计算值与实验值的平均误差为5.9%。  相似文献   

8.
Hot compression of 7050 aluminum alloy was performed on Gleeble 1500D thermo-mechanical simulator at 350 ℃ and 450 ℃ with a constant strain rate of 0.1 s-1 to different nominal strains of 0.1, 0.3 and 0.7. Microstructures of 7050 alloy under various compression conditions were observed by TEM to investigate the microstructure evolution process of the alloy deformed at various temperatures. The microstructure evolves from dislocation tangles to cell structure and subgrain structure when being deformed at 350 ℃, of which dynamic recovery is the softening mechanism. However, continuous dynamic recrystallization (DRX) occurs during hot deformation at 450 ℃, in which the main nucleation mechanisms of DRX are subgrain growth and subgrain coalescence rather than particle-simulated nucleation (PSN).  相似文献   

9.
High-temperature deformation behavior tests of as-cast Ti-45Al-2Cr-3Ta-0.5W alloy were conducted over a wide range of strain rates (0.001-1.0 s?1) and temperatures (1150-1300 °C). The flow curves for the current alloy exhibited sharp peaks at low strain levels, followed by pronounced work hardening and flow localization at high strain levels. Phenomenological analysis of the strain rate and temperature dependence of peak stress data yielded an average value of the strain rate sensitivity equal to 0.25 and an apparent activation energy of ~420 kJ/mol. Processing maps were established under different deformation conditions, and the optimal condition for hot work on this material was determined to be 1250 °C/0.001 s?1. The stable deformation region was also found to decrease with increasing strain. Dynamic recrystallization (DRX) was the major softening mechanism controlling the growth of grains at the grain boundary. Meanwhile, local globularization and dynamic recovery (DR) were the main softening mechanisms in the lamellar colony. When deformed at higher temperatures (~1300 °C), the cyclic DRX and DR appeared to dominate the deformation. Moreover, the evolution of the β phase during hot deformation played an important role in the dynamic softening of the alloy.  相似文献   

10.
The hot deformation behavior of homogenized Mg–6.5Gd–1.3Nd–0.7Y–0.3Zn alloy was investigated during compression at temperatures of 250–400 ℃ and at strain rates ranging from 0.001 to 0.100 s~(-1). Microstructure analyses show that the flow behaviors are associated with the deformation mechanisms. At the lower temperatures(250–300 ℃), deformation twinning is triggered due to the difficult activation of dislocation cross-slip. Dynamic recrystallization(DRX) accompanied by dynamic precipitation occurs at the temperature of 350 ℃ and influences the softening behavior of the flow.DRX that develops extensively at original grain boundaries is the main softening mechanism at the high temperature of 400 ℃ and eventually brings a more homogeneous microstructure than that in other deformation conditions. The volume fraction of the DRXed grains increases with temperature increasing and decreases with strain rate increasing.  相似文献   

11.
Al-cladded Al–Zn–Mg–Cu sheets were compressed up to 70% reduction on a Gleeble–3500 thermo-mechanical simulator with temperatures ranging from 380 to 450 °C at strain rates between 0.1 and 30 s?1. The microstructures of the Al cladding and the Al–Zn–Mg–Cu matrix were characterized by electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD). The microstructure is closely related to the level of recovery and recrystallization, which can be influenced by deformation temperature, deformation pass and deformation rate. The level of recovery and recrystallization are different in the Al cladding and the Al–Zn–Mg–Cu matrix. Higher deformation temperature results in higher degree of recrystallization and coarser grain size. Static recrystallization and recovery can happen during the interval of deformation passes. Higher strain rate leads to finer sub-grains at strain rate below 10 s?1; however, dynamic recovery and recrystallization are limited at strain rate of 30 s?1 due to shorter duration at elevated temperatures.  相似文献   

12.
通过热压缩实验研究了ZL270LF铝合金在变形量为70%,温度为300~550 ℃,应变速率为 0.01~10 s-1范围的热变形行为,建立了流变应力本构方程模型,绘制出了二维热加工图,确定了最佳热加工区域,采用电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术研究了该合金的组织演变规律。结果表明:ZL270LF铝合金的流变应力随变形温度的升高和应变速率的降低而降低,热变形激活能为309.05 kJ/mol,最优热加工区为温度470~530 ℃、应变速率为0.01~1 s-1。该合金在热变形过程中存在3种不同的DRX机制,即连续动态再结晶(CDRX)、不连续动态再结晶(DDRX)和几何动态再结晶(GDRX),其中CDRX是ZL270LF铝合金动态再结晶的主要机制。  相似文献   

13.
Compression tests of 7050 aluminum alloy have been conducted at different temperatures (340, 380, 420, and 460 °C) and different strain rates of 0.1, 1, 10, and 100 s?1. The microstructure characteristics of the alloy after deformation are investigated using OM, electron backscatter diffraction (EBSD) technique and TEM. Results show that the volume fraction of recrystallized grains and the average misorientation angle increase with the increase of deformation temperature with the strain rate of 0.1 s?1. When the 7050 aluminum alloys were deformed at 460 °C, the volume fraction of recrystallized grains and average misorientation angle decrease with increasing strain rate. The primary softening mechanism of the 7050 aluminum alloy deformed at 340, 380, and 420 °C with the strain rate of 0.1 s?1 is dynamic recovery. Dynamic recrystallization is the main softening mechanism of the alloy deformed at 460 °C and different strain rates. The softening mechanism of the alloy is not sensitive to strain rate.  相似文献   

14.
Hot deformation behaviors and microstructure evolution of Ti?3Al?5Mo?4Cr?2Zr?1Fe (Ti-35421) alloy in the β single field are investigated by isothermal compression tests on a Gleeble?3500 simulator at temperatures of 820?900 °C and strain rates of 0.001?1 s?1. The research results show that discontinuous yield phenomenon and rheological softening are affected by the strain rates and deformation temperatures. The critical conditions for dynamic recrystallization and kinetic model of Ti-35421 alloy are determined, and the Arrhenius constitutive model is constructed. The rheological behaviors of Ti-35421 alloys above β phase transformation temperature are predicted by the constitutive model accurately. The EBSD analysis proves that the deformation softening is controlled by dynamic recovery and dynamic recrystallization. In addition, continuous dynamic recrystallization is determined during hot deformation, and the calculation model for recrystallization grain sizes is established. Good linear dependency between the experimental and simulated values of recrystallized grain sizes indicates that the present model can be used for the prediction of recrystallized grain size with high accuracy.  相似文献   

15.
The hot deformation behavior of AMS 5708 nickel-based superalloy was investigated by means of hot compression tests and a processing map in the temperature range of 950-1200 °C and a strain rate range of 0.01-1 s?1 was constructed. The true stress-true strain curves showed that the maximum flow stress decreases with the increase of temperature and decrease of strain rate. The developed processing map based on experimental data, showed variations of efficiency of power dissipation relating to temperature and strain rate at constant strain. Interpretation of the processing map showed one stable domain, in which dynamic recrystallization was the dominant microstructural phenomenon, and one instability domain with flow localization. The results of interpretation of flow stress curves and processing map were verified by the microstructure observations. There are two optimum conditions for hot working of this alloy with efficiency peak of 0.36: the first is at 1150 °C for a strain rate of 1 s?1 that produces a fine grained microstructure. The second is at 1200 °C for a strain rate of 0.01 s?1 that produces a coarse grained microstructure.  相似文献   

16.
研究了316LN奥氏体不锈钢在1050~1200 ℃、应变速率0.1,1和50 s-1下的压缩变形行为,分析了变形温度和应变速率对热流曲线的影响。基于位错密度理论,建立了316LN钢的热变形本构模型,并揭示了316LN钢的软化机理。结果表明,在高温低应变速率(小于0.1 s-1)条件下,动态再结晶(DRX)为主导软化机理;在高温高应变速率(大于1 s-1)条件下,动态回复(DRV)为主导软化机理;在高温及应变速率为0.1和1 s-1条件下,DRV和DRX共同作用。构建的模型可以很好地预测316LN钢的热变形行为,其Pearson相关系数为0.9956,平均相对误差绝对值为3.07%,为一个精确的本构模型。  相似文献   

17.
In order to clarify the effect of strain rate on hot deformation characteristics of GH690 superalloy, the hot deformation behavior of this superalloy was investigated by isothermal compression in the temperature range of 1000–1200 °C and strain rate range of 0.001–10 s?1 on a Gleeble–3800 thermo-mechanical simulator. The results reveal that the flow stress is sensitive to the strain rate, and the dynamic recrystallization (DRX) is the principal softening mechanism. The strain rate of 0.1 s?1 is considered to be the critical point during the hot deformation at 1000 °C. The DRX process is closely related to the strain rate due to the adiabatic temperature rise. The strain rate has an important influence on DDRX and CDRX during hot deformation. The nucleation of DRX can be activated by twin boundaries, and there is a lower fraction of 3n (n=1, 2, 3) boundaries at the intermediate strain rate of 0.1 s?1.  相似文献   

18.
The hot deformation characteristics of Inconel 690 superalloy were investigated on the Gleeble-3800 thermal-mechanical simulator. The testing temperatures were in the range of 1000-1200 °C, the strain rate was 10 s?1, and the maximum true strain was 0.9. Optical microscopy, transmission electron microscopy, and electron backscatter diffraction techniques were employed to analyze the microstructure evolution and nucleation mechanisms of dynamic recrystallization (DRX). The results show that multiple-cycle discontinuous dynamic recrystallization (DDRX) occurs in the process of hot deformation under the conditions above. DRX grain size decreases with decreasing temperature and increasing strain. DDRX with sub-grains directly transforming into grains is the dominating nucleation mechanism of DRX. And, the nucleation mechanism of bulging of the original grain boundaries can only be considered as an assistant nucleation mechanism of DRX, which mainly occurs in the beginning of the deformation.  相似文献   

19.
The hot deformation behavior of a high strength low carbon steel was investigated using hot compression test at the temperature range of 850–1100 °C and under strain rates varying from 0.001 to 1 s?1. It was found that the flow curves of the steel were typical of dynamic recrystallization at the temperature of 950 °C and above; at tested strain rates lower than 1 s?1. A very good correlation between the flow stress and Zener–Hollomon parameter was obtained using a hyperbolic sine function. The activation energy of deformation was found to be around 390 kJ mol?1. The kinetics of dynamic recrystallization of the steel was studied by comparing it with a hypothetical dynamic recovery curve, and the dynamically fraction recrystallized was modeled by the Kolmogorov–Johnson–Mehl–Avrami relation. The Avrami exponent was approximately constant around 1.8, which suggested that the type of nucleation was one of site saturation on grain boundaries and edges.  相似文献   

20.
Hot deformation behavior of the Ni-based superalloy IN-738LC was investigated by means of hot compression tests over the temperature range of 1000-1200 °C and strain rate range of 0.01-1 s?1. The obtained peak flow stresses were related to strain rate and temperature through the hyperbolic sine equation with activation energy of 950 kJ/mol. Dynamic material model was used to obtain the processing map of IN-738LC. Analysis of the microstructure was carried out in order to study each domain’s characteristic represented by the processing map. The results showed that dynamic recrystallization occurs in the temperature range of 1150-1200 °C and strain rate of 0.1 s?1 with the maximum power dissipation efficiency of 35%. The unstable domain was exhibited in the temperature range of 1000-1200 °C and strain rate of 1 s?1 on the occurrence of severe deformation bands and grain boundary cracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号