首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long-term variability of the fetal heart rate (FHR) provides valuable information on the fetal health status. The routine clinical FHR measurements are usually carried out by the means of ultrasound cardiography. Although the frequent FHR monitoring is recommendable, the high quality ultrasound devices are so expensive that they are not available for home care use. The passive and fully non-invasive acoustic recording called phonocardiography, provides an alternative low-cost measurement method. Unfortunately, the acoustic signal recorded on the maternal abdominal surface is heavily loaded by noise, thus the determination of the FHR raises serious signal processing issues. The development of an accurate and robust fetal phonocardiograph has been since long researched. This paper presents a novel two-channel phonocardiographic device and an advanced signal processing method for determination of the FHR. The developed system provided 83% accuracy compared to the simultaneously recorded reference ultrasound measurements.  相似文献   

2.
The assessment of fetal wellbeing depends heavily on variations in fetal heart rate (FHR) patterns. The variations in FHR patterns are very complex in nature thus its reliable interpretation is very difficult and often leads to erroneous diagnosis. We propose a new method for evaluation of fetal health status based on interval type-2 fuzzy logic through fetal phonocardiography (fPCG). Type-2 fuzzy logic is a powerful tool in handling uncertainties due to extraneous variations in FHR patterns through its increased fuzziness of relations. Four FHR parameters are extracted from each fPCG signal for diagnostic decision making. The membership functions of these four inputs and one output are chosen as a range of values so as to represent the level of uncertainty. The fuzzy rules are constructed based on standard clinical guidelines on FHR parameters. Experimental clinical tests have shown very good performance of the developed system in comparison with the FHR trace simultaneously recorded through standard fetal monitor. Statistical evaluation of the developed system shows 92% accuracy. With the proposed method we hope that, long-term and continuous antenatal care will become easy, cost effective, reliable and efficient.  相似文献   

3.
In this study, a new scheme was presented for the prediction of fetal state from fetal heart rate (FHR) and the uterine contraction (UC) signals obtained from cardiotocogram (CTG) recordings. CTG recordings are widely used in pregnancy and provide very valuable information regarding fetal well-being. The information effectively extracted from these recordings can be used to predict pathological state of the fetus and makes an early intervention possible before there is an irreversible damage to the fetus. The proposed scheme is based on adaptive neuro-fuzzy inference systems (ANFIS). Using features extracted from the FHR and UC signals, an ANFIS was trained to predict the normal and the pathological state. The method was tested with clinical data that consist of 1,831 CTG recordings. Out of these 1,831 recordings, 1,655 of them were classified as normal and the remaining 176 were classified as pathological by a consensus of three expert obstetricians. It was demonstrated that the ANFIS-based method was able to classify the normal and the pathologic states with 97.2 and 96.6 % accuracy, respectively.  相似文献   

4.
Cardiotocography is the primary method for biophysical assessment of fetal state, which is mainly based on the recording and analysis of fetal heart rate (FHR) signal. Computerized systems for fetal monitoring provide a quantitative analysis of FHR signals, however the effective methods of qualitative assessment that could support the process of medical diagnosis are still needed. The measurements of hydronium ions concentration (pH) in neonatal cord blood are an objective indicator of the fetal outcome. Improper pH level is a symptom of acidemia being the result of fetal hypoxia. The paper proposes a two-step analysis of fetal heart rate recordings that allows for effective prediction of the acidemia risk. The first step consists in fuzzy classification of FHR signals. Fuzzy inference corresponds to the clinical interpretation of signals based on the FIGO guidelines. The goal of inference is to eliminate recordings indicating the fetal wellbeing from the further classification process. In the second step, the remained recordings are nonlinearly classified using multilayer perceptron and Lagrangian Support Vector Machines (LSVM). The proposed procedures are evaluated using data collected with computerized fetal surveillance system. The assessment performance is evaluated with the number of correct classifications (CC) and quality index (QI) defined as the geometric mean of sensitivity and specificity. The highest CC = 92.0% and QI = 88.2% were achieved for the Weighted Fuzzy Scoring System combined with the LSVM algorithm. The obtained results confirm the efficacy of the proposed methods of computerized analysis of FHR signals in the evaluation of the risk of neonatal acidemia.  相似文献   

5.
This paper describes a robust and simple algorithm for fetal electrocardiogram (FECG) estimation from abdominal signal using adaptive comb filter (ACF). The ACF can adjust itself to the temporal variations in fundamental frequency, which makes it qualified for the estimation of quasi-periodic component from physiologic signal, such as ECG. The validity and performance of the described method are confirmed through experiments on real fetal ECG data. A comparison with the well-known independent component analysis (ICA) method has also been presented.  相似文献   

6.
Birth asphyxia can result in death or permanent brain damage. To prevent it, the fetal heart rate (FHR) is recorded in labour on a paper strip. In clinical practice, the complicated FHR patterns are assessed by eye, which is error-prone, inconsistent and unreliable. Objective alternatives are needed and thus we investigated the applicability of feed-forward artificial neural networks (ANNs) for FHR analysis. Six FHR features were extracted and combined with six clinical parameters to form a feature space of 12 dimensions. The feature space was reduced to six dimensions by principal component analysis. Subsequently, a network committee of ten ANNs was trained with the data of 124 patients (a balanced set of 62 adverse, coded 1, and 62 normal outcomes, coded 0). The ANN committee was tested on another balanced set of 252 patients obtaining misclassification rate of 36%. Finally, the committee was tested on a large dataset of 7,568 patients (non-balanced). As the committee output continuously increased from 0 to 1, there was a consistent growth of the adverse outcome rate (from 0.26 to 5.3%) and the low umbilical pH rate (from 2.6 to 16.7%.) Based on this correlation between the committee output and the risk of compromise, we concluded that ANNs can be successfully applied to FHR monitoring in labour. However, extensive further work is necessary, for which we outline our plans. To our knowledge, this is the first time that an automated method for FHR diagnostic analysis has been tested on a database of this size.  相似文献   

7.
针对FastICA算法容易陷入局部最优,导致提取的胎儿心电往往含有较多噪声的问题.本文将修正BFGS法(MB?FGS)和混沌优化算法相结合来代替传统的牛顿迭代法,提出一种新的独立分量分析方法,并用于胎儿心电信号的提取.分别用合成信号和临床信号对该算法进行验证,实验结果表明本文提出的算法能提取出清晰并不含母体心电的胎儿心电信号,而且算法性能更优于FastICA.  相似文献   

8.
Direct acquisition and analysis of the fetal ECG signal during labor is important for monitoring the well being of the fetus. The results of the present study of the frequency, time, and amplitude parameters of fetal ECG signals can be used to develop algorithms for analyzing the fetal ECG during labor. The article was translated by the authors. This work was partially supported by the Russian Foundation for Basic Research, project no. 03-01-00216.  相似文献   

9.
The recognition of accelerative and decelerative patterns in the fetal heart rate (FHR) is one of the tasks carried out manually by obstetricians when they analyze cardiotocograms for information respecting the fetal state. An approach based on artificial neural networks formed by a multilayer perceptron (MLP) is developed. However, since the system utilizes the FHR signal as direct input, an anterior stage must be incorporated that applies a principal component analysis (PCA) so as to make the system independent of the signal baseline. Furthermore, the introduction of multiresolution into the PCA has resolved other problems that were detected in the application of the system. Presented in this paper are the results of validation of these systems designated the PCA-MLP and multiresolutlon principal component analysis (MR-PCA) systems against three clinical experts.  相似文献   

10.
在生物医学信号处理领域,独立分量分析(PCA)和主分量分析(ICA)是两种广泛应用的方法。但是,这两种方法各有其优缺点。提出了一种新颖的方法,将ICA和PCA相结合,通过求相关的技术,分别取ICA和PCA方法的优点。将该方法应用于从母体腹部测得的多通道信号中提取胎儿心电信号的实验,得到令人满意的结果。研究结果表明,这种结合ICA和PCA的方法能够比较准确地分离出所需要的胎儿心电信号,进而可以对胎儿心电进行监护,因此在临床上具有一定的实用价值。  相似文献   

11.
胎儿心率检测是围产期常规检测,是评估孕妇和胎儿健康的主要生理指标.相对现有的接触式胎心检测技术,本文提出一种更为便捷,成本低廉的非接触式胎儿心率提取算法.首先基于欧拉视频颜色放大技术,对视频中颜色信号放大.其次,利用光电容积脉搏波描记法提取血液容积脉冲信号,并对母体噪声进行分离,计算功率谱密度提取.将采集到的胎心率,与医院专用胎心设备检测的结果进行定量分析,数据表明可以达到96%的准确度.  相似文献   

12.
针对物联网技术的发展,进行了心电医疗监护物联网感知层传感器节点软硬件设计,完成了基于NesC语言的组件结构化软件设计。在经典聚类路由协议LEACH之上提出了一种适用于心电医疗监护物联网感知层的改进型LEACH-SC算法,将感知层内簇头的分布进行优化,平衡簇的规模,在一定程度上解决簇头分布不均匀的问题。为保证心电医疗监护物联网应用层实时准确的心电诊断,提出了一种基于小波变换、希尔伯特变换和改进包络对心电信号进行变换的检测算法,实现了对QRS波群具体形态和位置的检测和识别,在检测到QRS波的基础上采用检测准则  相似文献   

13.
利用盲分离技术从母亲腹心电中分离出胎心电在胎心电幅度较强的情况下是可行的,但如果胎心电过弱,盲分离中容易将胎心电视作噪声而无法正确分离.在胎心电过弱时,先对腹心电进行形态学滤波后检测胎心电的R峰,然后在配准胎儿R峰的前提下,平移、叠加并重构信号,最后对重构信号应用盲分离方法分离出较好的胎心电信号.实验证明,当胎心电微弱,直接盲分离容易将胎心电作为噪声而无法得到有效胎心电时,R峰配准重构可以有效地增强胎心电的信号强度,对重构后的信号进行盲分离可得到有效的胎心电,进而得到较精确的胎心率.  相似文献   

14.
The paper presents an overview of the 15 year long development of fetal phonocardiography including the works on the applied signal processing methods for identification of sound components. Based on the improvements achieved on this field, the paper shows that beyond the traditional CTG test the phonocardiography may be successfully applied for long-term fetal measurements and home monitoring. In addition, by indication of heart murmurs based on a comprehensive analysis of the recorded heart sound congenital heart defects can also be detected together with additional features in the third trimester. This makes an early widespread screening possible combined with the prescribed CTG test even at home using a telemedicine system.  相似文献   

15.
针对胎儿心电难以提取问题,提出一种从母体腹壁混合信号中提取胎儿心电的方法。利用广义回归神经网络(GRNN)估计母体心电信号传导至腹壁的非线性变换,将非线性变换后的母体心电信号从腹壁混合信号中减去,再通过小波包去噪技术抑制胎儿心电的基线漂移和噪声,得到清晰的胎儿心电。应用合成心电信号和临床心电信号完成实验,在胎儿心电和母体心电QRS波完全重叠情况下,提取出清晰的胎儿心电。实验结果验证了方法的有效性。  相似文献   

16.
ECG beat classification by a novel hybrid neural network   总被引:10,自引:0,他引:10  
This paper presents a novel hybrid neural network structure for the classification of the electrocardiogram (ECG) beats. Two feature extraction methods: Fourier and wavelet analyses for ECG beat classification are comparatively investigated in eight-dimensional feature space. ECG features are determined by dynamic programming according to the divergence value. Classification performance, training time and the number of nodes of the multi-layer perceptron (MLP), restricted Coulomb energy (RCE) and a novel hybrid neural network are comparatively presented. In order to increase the classification performance and to decrease the number of nodes, the novel hybrid structure is trained by the genetic algorithms (GAs). Ten types of ECG beats obtained from the MIT-BIH database and from a real-time ECG measurement system are classified with a success of 96% by using the hybrid structure.  相似文献   

17.
BackgroundThe neonatal respiratory morbidity that was primarily caused by the immaturity of the fetal lung is an important clinical issue in close relation to the morbidity and mortality of the fetus. In clinics, the amniocentesis has been used to evaluate the fetal lung maturity, which is time-consuming, costly and invasive. As a non-invasive means, ultrasonography has been explored to quantitatively examine the fetal lung in the past decades. However, existing studies required the contour of the fetal lung which was delineated manually. This may lead to significant inter- and intra-observer variations.MethodsWe proposed a deep learning model for automated fetal lung segmentation and measurement, which was constructed combined U-Net with Graph model and pre-trained Vgg-16 network. The graph connection would extract stable feature for final segmentation and pre-trained method could speed up convergence.The model was trained with 3500 datasets augmented from 250 ultrasound images with both the fetal lung and heart delineated manually, and tested on 50 ultrasound images. In addition, the correlation between the size of fetal lung/heart as delineated by the model with gestational age was analyzed.ResultsThe fetal lung and cardiac area were segmented automatically with the accuracy, average Intersection over Union(IoU), sensitivity and precision being 0.991, 0.818, 0.909 and 0.888, respectively. In addition, the size of fetal lung/heart was well correlated with the gestational age, demonstrating good potentials for assessing the fetal development.ConclusionsThis study proposed a new robust method for automatic fetal lung segmentation in ultrasound images using Vgg16-GCN-UNet. Our proposed method could be utilized potentially not only to improve existing research in quantitative analyzing the fetal lung using ultrasound imaging technology, but also to alleviate the labor of the clinicians in routine measurement of the fetal lung/cardiac.  相似文献   

18.
传统的非接触式心电监测系统在硬质印刷电路板构建的电容电极基础上,使用单导联方式进行心电监测,且仅根据心率变化进行心脏异常诊断,无法满足当前临床诊断标准.基于电容耦合原理,设计了一款多导联心电监测系统,将3个由导电织布构成的柔性电容电极集成于椅座背部,用于获取标准肢体导联Ⅰ、Ⅱ、Ⅲ和加压单极肢体导联 aVR、aVL、aVF等6导联心电信号.借由导电织布式柔性电容电极与人体表面较好的接触效应,可以有效减小运动伪影的产生.通过与硬质PCB电极输出的心电波形相比,使用本系统的患者在移动情况下输出的心电波形保持相对平稳状态,无明显运动伪影.系统实验证实了此新型多导联心电监测仪的有效性,不仅可以满足个人日常心电监测使用,而且适于长期动态心电监测.  相似文献   

19.
In this paper, a non-invasive, portable and inexpensive antenatal care system is developed using fetal phonocardiography. The fPCG technique has the potential to provide low-cost and long-term diagnostics to the under-served population. The fPCG signal contains valuable diagnostic information regarding fetal health during antenatal period. The fPCG signals are acquired from the maternal abdominal surface using a wireless data acquisition and recording system. The diagnostic parameters e.g., baseline, variability, acceleration and deceleration of the fetal heart rate are derived from the fPCG signal. A model based on adaptive neuro-fuzzy inference system is developed for the evaluation of fetal health status. To study the performance of the developed system, experiments were carried out with real fPCG signals under the supervision of medical experts. Its performance is found to be in close proximity with the widely accepted Doppler ultrasound based fetal monitor results. The overall performance shows that the developed system has a long-term monitoring capability with very high performance to cost ratio. The system can be used as first screening tool by the medical practitioners.  相似文献   

20.
Yunxia  Zhang 《Neurocomputing》2008,71(7-9):1538-1542
The extraction of fetal electrocardiogram (FECG) from the composite maternal ECG signal is discussed. This problem can be modelled from the perspective of blind source extraction. An important and primary work is done by Barros and Cichocki, who propose an FECG extraction method for the noisy-free mixing model. However, it is realistic to extract the FECG from noisy measurements. Therefore, we propose a new algorithm for the FECG extraction with additive noise. Theoretical analysis and simulation results confirm the validity of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号