首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《塑料科技》2017,(4):113-116
以磷酸及哌嗪为起始原料制备了二磷酸哌嗪,然后经缩聚得到焦磷酸哌嗪(PPAP)。采用红外光谱对产物PPAP的结构进行了表征,并通过热重分析研究了PPAP的热稳定性及成炭性能。然后将PPAP与三聚氰胺按9:1的质量比复配后添加到环氧树脂(EP)中,并以间苯二胺(PDA)为固化剂制备阻燃EP复合材料,通过极限氧指数(LOI)和垂直燃烧(UL 94)测试研究了材料的阻燃性能。结果表明:产物PPAP的起始热分解温度为262℃,残炭率(800℃)为16.4%,表明PPAP具有良好的热稳定性及成炭性能。当复合阻燃剂的总添加量仅为6%时,材料即可通过UL 94V-0级垂直燃烧测试,同时其LOI达到32.1%,表明PPAP/三聚氰胺阻燃体系对EP具有良好的阻燃作用。  相似文献   

2.
制备了优异阻燃性能(LOI36%)兼具良好力学性能的膨胀型阻燃聚丙烯复合材料OPGS/PA-APP/PP。将有机化坡缕石黏土引入到哌嗪-多聚磷酸铵(PA-APP)膨胀型阻燃(IFR)聚丙烯(PP)复合材料中,通过极限氧指数(LOI)、垂直燃烧(UL-94)、热重分析法(TGA)、扫描电子显微镜(SEM)、通用电子万能试验机研究了有机化坡缕石黏土添加量对PA-APP阻燃聚丙烯复合材料阻燃性能和力学性能的影响。结果表明,添加质量分数为2%的有机化坡缕石黏土提高了该复合材料的阻燃性能和力学性能。此外,所制备样品经垂直燃烧测试可达到阻燃V-0级别。实验证明,有机化坡缕石黏土在膨胀型阻燃聚丙烯复合材料中具有明显的协效阻燃作用。  相似文献   

3.
李旭  许苗军  李斌 《塑料》2016,(4):39-42,72
将实验室自制的三嗪大分子成炭发泡剂(CFA)、聚磷酸铵(APP)及硅树脂复配成膨胀阻燃剂(IFR)添加到聚乳酸(PLA)材料中制备阻燃PLA(IFR-PLA)材料,通过极限氧指数(LOI)和垂直燃烧(UL-94)测试研究了材料的阻燃性能。通过热重分析(TGA)测试研究了材料的热降解行为和成炭性能,通过锥形量热(CONE)测试研究了材料的燃烧行为,并对其燃烧后残炭的形貌进行研究。结果表明:当APP与CFA的质量比为5∶1,IFR的添加量为15%时,IFR-PLA材料通过UL-94 V-0级,LOI值达33.5%。IFR的加入促进了PLA材料的降解和成炭,从而提高了材料的阻燃性能。  相似文献   

4.
将季戊四醇磷酸酯(PEPA)和三聚氰胺聚磷酸盐(MPP)复配成一种膨胀型阻燃剂(IFR),用于对长玻纤增强聚丙烯(LGFPP)进行阻燃。采用极限氧指数测试、垂直燃烧测试、扫描电子显微镜观察、热重分析、力学性能测试等方法探讨了该IFR组成对LGFPP的阻燃性能、热稳定性能以及力学性能的影响。结果表明,IFR的总添加量为20%,当PEPA与MPP质量比为11∶9时,复配阻燃效果最佳,阻燃LGFPP的极限氧指数值为26.1%,UL–94燃烧等级达到V–0级;生成的炭层致密、连续性好且稳定;阻燃LGFPP表现出较好的热稳定性与力学性能。  相似文献   

5.
利用无卤膨胀阻燃剂(IFR)阻燃长玻纤增强聚丙烯(LGFPP)复合材料,研究IFR的添加量对复合材料阻燃性能、热稳定性能、燃烧性能和力学性能的影响。结果表明,加入IFR使复合材料燃烧后生成了具有阻燃作用的炭层,显著提高了复合材料的阻燃性能。随IFR添加量的增加,复合材料的极限氧指数(LOI)逐渐提高,热释放速率峰值及其平均值、总热释放速率和生烟速率逐渐降低,力学性能略有下降。当IFR质量分数为20%时,复合材料的LOI和垂直燃烧等级分别达到了24.4%和UL 94 V-0级。  相似文献   

6.
通过垂直燃烧试验、极限氧指数(LOI)测定和锥形量热分析,对焦磷酸哌嗪(DPP)与三聚氰胺氰尿酸盐(MCA)复合而成的膨胀型阻燃剂(IFR)阻燃聚丙烯(PP)进行了研究。结果表明:当m(MCA):m(DPP)为1.0∶2.5,IFR质量分数为26%时,PP的LOI为34.2%,垂直燃烧试验可通过V-0级;与PP相比,阻燃PP的热释放速率(HRR)、总热释放量(THR)分别降低了91.34%,31.42%。该IFR对PP的阻燃机理与聚磷酸铵基IFR的类似,主要是通过凝聚相阻燃。  相似文献   

7.
研究了由三嗪类齐聚物碳源(CA)和聚磷酸铵(APP)以质量比为1∶3复配组成的膨胀型阻燃剂(IFR)在乙烯-醋酸乙烯共聚物(EVA)中的阻燃作用,采用了氧指数、垂直燃烧和锥形量热法研究了IFR不同添加量对EVA阻燃效果的影响,并通过理论-实际热重分析、成炭分析等手段对IFR的阻燃机理进行分析推测。发现IFR对EVA有着良好的阻燃效果,当IFR总添加量为40%时,材料氧指数为43%,垂直燃烧可达到UL94 V-0级,热释放峰值(PHRR)由纯EVA的517 kW/m~2降低至83 kW/m~2,烟释放峰值(PSPR)由纯EVA的0.059 m~2/s降低为0.013m~2/s,平均质量损失速率(AMLR)相比纯EVA的0.048 g/s降低至0.011 g/s。通过对IFR的阻燃机理分析推测知,CA和APP在燃烧过程中相互反应生成了更加耐高温的结构,该结构在NH3的吹胀作用下形成膨胀炭层,膨胀炭层具有良好的隔热隔氧效果,从而使材料具有优良的阻燃性能。  相似文献   

8.
《塑料科技》2016,(5):83-86
以三嗪成炭发泡剂(CFA)、聚磷酸铵(APP)及二氧化硅(Si O2)复配制备成三嗪膨胀阻燃剂(IFR);将聚苯醚(PPO)以不同的比例取代IFR体系中的CFA成分,制备出新型膨胀阻燃剂,并将其添加到聚丙烯(PP)中制备阻燃PP材料。通过极限氧指数(LOI)和垂直燃烧(UL 94)测试研究了材料的阻燃性能,通过拉伸性能、弯曲性能和冲击性能测试研究了材料的力学性能,通过热重分析(TGA)测试研究了材料的热稳定性及热降解行为。结果表明:当阻燃剂用量为20%、PPO替换CFA的量为20%时,阻燃PP材料能通过UL 94V-0级,氧指数为31.0%;当阻燃剂用量为22%、PPO替换CFA的量为30%时,阻燃PP材料依然能通过UL 94V-0级,氧指数为30.9%,随着PPO替换比例的增加,材料的阻燃性能逐渐下降。力学性能测试结果表明,与单独添加IFR相比,随着PPO替换量的增加,阻燃材料的力学性能略有下降,但下降幅度不大。TGA测试结果表明,当阻燃剂用量为20%、PPO替换20%的CFA时,对材料的热降解行为和成炭性能几乎没有影响。总之,在保证材料阻燃性能的前提下,用适量PPO替换CFA,在一定程度上降低了三嗪膨胀阻燃剂及膨胀阻燃PP材料的成本,从而提高了产品的市场竞争力。  相似文献   

9.
《塑料》2017,(1)
三嗪成炭剂与聚磷酸铵(APP)复配为膨胀型阻燃剂(IFR),加入埃洛石纳米管(HNTs)形成膨胀型阻燃聚丙烯(PP)复合材料。结果表明:HNTs与IFR对阻燃PP有协同作用,当IFR添加量为17(质量份数,下同),HNTs分添加量为3,阻燃效果达到UL94 V-0级。分析PP/IFR/HNTs体系的阻燃机理,得出HNTs与APP有交联成炭作用,燃烧时能快速在材料表面形成炭层和熔融物,HNTs也起到骨架支撑作用,在两种相互作用下,使PP/IFR/HNTs具有优异的阻燃性能。  相似文献   

10.
本实验通过对聚丙烯(PP)进行改性,探讨在加入无卤膨胀型阻燃剂(IFR)后,再加入不同比例的蒙脱土(MMT)条件下,对于聚丙烯(PP)在阻燃性能,力学性能,以及微观形态上产生的影响。通过氧指数、垂直燃烧、SEM图像、红外和热重分析以及力学性能测试等,研究MMT对以聚丙烯和IFR为基体的材料的阻燃特性和力学性能的影响。实验结果表明:蒙脱土加入以IFR与聚丙烯复合的基体当中,其自身并未与材料形成插层结构,并且使得IFR原有的膨胀性受到抑制,材料的氧指数下降,成炭作用降低,整体的阻燃效果下降;但是蒙脱土的加入又使得材料的热稳定性提高,耐热性变好。蒙脱土在材料当中作为应力集中点,导致材料的内应力加大,力学性能变差。  相似文献   

11.
将自制的超支化三嗪成炭剂(CFA)与聚磷酸铵(APP)以1∶1的比例复配成膨胀型阻燃剂(IFR),用于聚丙烯(PP)的阻燃。采用冲击实验、拉伸实验、极限氧指数仪、垂直燃烧(UL 94)和扫描电子显微镜 (SEM)等方法表征了PP阻燃复合材料的力学性能、阻燃性能,分析了断面形貌。结果表明,添加阻燃剂后,冲击强度呈先增加后降低的趋势,拉伸强度则随着阻燃剂含量的增加不断下降,但降幅不明显;含有15 % IFR的阻燃复合材料,其垂直燃烧等级即可通过UL 94 V-0级测试,显示出复合IFR具有优秀的阻燃效果。  相似文献   

12.
通过极限氧指数、垂直燃烧、烟密度、锥形量热、扫描电子显微镜等表征方法,研究了不同用量自制哌嗪类膨胀阻燃剂(IFR)对乙烯醋酸乙烯共聚物(EVA)的阻燃作用。结果表明,添加30 %(质量分数,下同)IFR的EVA材料极限氧指数能达到37 %,UL 94垂直燃烧达到V-0级,有焰、无焰烟密度均很低,热释放速率峰值降至156 kW/m2,仅仅只有纯EVA的21.8 %,燃烧后形成了致密的膨胀炭层;该阻燃材料具有很低的吸湿率,力学性能保持较好,且能满足RoHS环保要求。  相似文献   

13.
将有机蒙脱土(OMMT)和水滑石(LDH)分别与膨胀阻燃剂(IFR)构成阻燃体系,对长玻纤增强聚丙烯(LGFPP)复合材料进行阻燃改性,通过极限氧指数(LOI)和锥形量热仪(CONE)测试,对比研究了两种体系阻燃LGFPP的阻燃性能及阻燃机理。结果表明:当OMMT质量分数为2%时,复合材料的LOI达到最大值24.2%,且垂直燃烧达到了UL-94 V-0级;当LDH质量分数为1%时,LOI达到最大值23.3%,而垂直燃烧等级仍为V-1级。以炭层阻隔的IFR/OMMT体系比以稀释阻燃的IFR/LDH体系更加有效地改善LGFPP的阻燃性能。  相似文献   

14.
对2个复合体系聚丙烯/膨胀型阻燃剂(PP/IFR)及聚丙烯/聚烯烃弹性体/纳米碳酸钙/膨胀型阻燃剂(PP/POE/nano-CaCO3/IFR)的阻燃性进行研究,通过测试氧指数、水平燃烧速率、烟密度以及燃烧测试后试样的形貌观察,分析了复合体系的阻燃效果及机理。结果表明,PP/IFR复合体系可达到优异的阻燃性能,IFR用量为30份时氧指数达到34.4%,并且可明显改善PP的熔滴现象。而添加POE破坏了阻燃炭层的形成,降低了氧指数,并伴随严重的熔滴,却能明显降低释烟量。  相似文献   

15.
采用不同质量配比的聚磷酸铵(APP)、季戊四醇(PER)、三聚氰胺(MEL)制备磷氮膨胀型阻燃剂(IFR)体系,用以阻燃乙烯-乙酸乙烯酯共聚物(EVAC),探讨了三种组分配比对EVAC阻燃性能和力学性能的影响。用拉伸性能评价IFR与EVAC相容性对力学性能的影响。利用锥形量热仪(CONE)评价IFR用量对EVAC阻燃性能和燃烧火灾性能参数的影响及阻燃机理。结果表明,PER与EVAC的相容性优于APP与EVAC的相容性;在IFR体系添加量为30份,APP∶PER=4∶1时氧指数最高,达到28.5%,材料的垂直燃烧测试可达UL–94 V–0级,水平燃烧测试达到HB级;CONE测试表明当阻燃剂IFR添加量为30%时,EVAC的火灾性能指数提高,生烟速率下降。  相似文献   

16.
为提高聚丙烯(PP)的阻燃性能,以焦磷酸哌嗪(PAPP)和次磷酸铝(AHP)为原料,通过熔融挤出的方式制备了不同质量比的PP复合材料,采用极限氧指数(LOI)、UL94垂直燃烧、热重分析(TG-DTG)、锥形量热(CONE)和扫描电子显微镜(SEM)等测试手段对PP复合材料热稳定性及阻燃抑烟性能进行分析,研究PAPP和AHP不同配比对阻燃性能的影响。结果表明,PAPP和AHP膨胀阻燃剂的加入大幅提升了PP复合材料的阻燃抑烟性能,当PAPP和AHP质量比为4∶1,总添加量为25%时,PP复合材料LOI达到31.5%,通过UL94垂直燃烧V-0级,800℃残炭率为23.16%,说明PAPP和AHP两者发挥了较好的协同阻燃作用。此外,其热释放速率(HRR)、总热释放量(THR)、烟释放速率(SPR)和总烟释放量(TSP)都得到大幅降低,SEM结果表明阻燃成分在PP复合材料表面形成了连续、致密的膨胀炭层,提升了材料的阻燃和抑烟性能。  相似文献   

17.
分子筛在无卤膨胀阻燃体系中的协效催化作用   总被引:3,自引:0,他引:3  
考察了分子筛在自制膨胀型阻燃体系(IFR)中的协效催化作用。利用添加分子筛的IFR对聚丙烯(PP)进行阻燃。运用扫描电子显微镜、垂直燃烧仪等对膨胀阻燃PP体系的表面形态和性能进行了研究。结果表明,阻燃PP加入不同的分子筛后,燃烧级数达到V-0级,氧指数最高增加17.86%,有明显的成炭效果,可获得良好的阻燃性能。  相似文献   

18.
《塑料科技》2016,(9):85-88
将自行研究生产的三嗪膨胀阻燃剂(IFR)添加到聚氨酯中制备阻燃硬质发泡聚氨酯(RPUF)材料,通过极限氧指数(LOI)研究了材料的阻燃性能,通过热重分析(TGA)测试研究了材料的热稳定性和成炭性能,通过扫描电镜(SEM)的测试了材料的泡孔结构及燃烧后炭层的表面形貌,同时还研究了阻燃剂添加量对材料的阻燃性能及压缩强度的影响。结果表明:纯RPUF材料的氧指数仅为18.7%,在空气中极易燃烧。当阻燃剂的添加量为25%时,材料的氧指数值提高到了26.1%,同时IFR的加入使得RPUF材料的压缩强度显著提升。TGA结果表明:阻燃剂的添加使得材料的起始热分解温度有所降低,但材料的残炭量得到了很大程度的提高。SEM结果表明:阻燃剂的加入对RPUF材料的泡孔结构影响不大,同时使材料燃烧后的炭层更加的致密和均匀,从而提高了材料的阻燃性能。  相似文献   

19.
采用膨胀型阻燃剂(IFR)及协效剂海泡石(SP)对长玻璃纤维增强聚丙烯(PP/LGF)复合材料进行阻燃,通过双螺杆挤出机制备了PP/LGF母粒,IFR母粒和SP母粒,然后将这3种母粒通过注塑机制备了PP/LGF/IFR/SP复合材料,通过极限氧指数(LOI)、垂直燃烧测试、锥形量热仪、热重分析、扫描电子显微镜、力学性能测试等表征PP/LGF各阻燃复合体系的性能。结果表明,当IFR质量分数为22%时,PP/LGF/IFR阻燃复合材料的LOI为28.8%,且垂直燃烧等级达到V–0级;锥形量热仪测试结果表明加入IFR及SP后阻燃复合体系的第一热释放速率峰值降低,而第二热释放速率峰消失;SP质量分数为1%,IFR质量分数为21%的PP/LGF/IFR/SP阻燃复合材料LOI为29.6%,垂直燃烧等级达到V–0级,热释放速率峰值和总热释放量得到有效降低,热稳定性最好,且燃烧时产生致密的炭层覆盖于玻璃纤维表面,同时加入1%SP后复合材料的力学性能下降幅度相对较小。  相似文献   

20.
《塑料》2018,(6)
将精制后的碱木质素代替部分聚醚多元醇,通过一步发泡法与聚合MDI混合制备了碱木质素聚氨酯泡沫,同时采用季戊四醇(PER)和聚磷酸铵(APP)复配组成膨胀阻燃剂(IFR)制备了碱木质素阻燃聚氨酯泡沫,通过极限氧指数(LOI)测试分析了碱木质素阻燃聚氨酯泡沫的阻燃性能。通过热重分析(TGA)、锥形量热测试(CONE)和扫描电子显微镜(SEM)测试,分别研究了所制试样的热降解行为和成炭性能、燃烧行为和残炭的形貌。分析结果表明:当碱木质素的添加量为聚醚多元醇的5%,APP与PER的质量比为3∶1,IFR的添加量为30%时,碱木质素基聚氨酯泡沫的LOI达到了24.8%,IFR的加入促进了碱木质素聚氨酯泡沫的降解和成炭,从而提高了材料的阻燃性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号