共查询到20条相似文献,搜索用时 93 毫秒
1.
视觉多目标跟踪模块在主动式车载障碍物检测系统中占据关键地位。然而,现有的视觉多目标跟踪算法多依赖离线计算得到的目标检测结果,并未充分考虑这个阶段耗时对实际应用中跟踪效果的影响。因此,本研究首先针对实际应用环境,设计了一个多线程异步的视觉障碍物检测系统框架;随后,提出了一种多特征融合的视觉多目标跟踪算法,该算法以本研究所提出的基于目标运动向量的运动一致性特征指标为基础,结合目标跟踪研究中常用的外观特征和马氏距离等特征,优化级联匹配策略,旨在提升对具有相似外观特征和运动规律的多个目标的跟踪稳定性,同时保证常规场景下目标的稳定跟踪;最后,将所提出的多目标跟踪算法集成于所设计的障碍物检测系统框架中,通过实验分析来验证该算法的有效性。实验结果表明,该算法能较稳定地跟踪实际应用环境下的各类目标,相比参照算法可达到更长时间稳定跟踪的效果。 相似文献
2.
3.
在图像多目标跟踪问题中,针对图像匹配无法辨别同类别目标以及状态滤波难以对目标突发机动建模两个难点,提出了一种多特征匹配融合跟踪算法。该算法在基于局部方差图(standard deviation map,STDM)的目标检测结果的基础上,首先利用目标感兴趣区域(region of interest,ROI)的图像匹配来克服目标状态匹配误差的影响;然后利用状态特征匹配消除图像匹配识别的模糊性;最后在关联代价全局最优化框架下,将两者匹配结果融合,以提高多目标跟踪的正确率。 相似文献
4.
随着无人机技术的不断发展,无人机多目标跟踪已成为无人机应用的关键技术之一.针对无人机视频中的复杂背景干扰、遮挡、视点高度和角度多变等问题,提出一种基于注意力特征融合的无人机多目标跟踪算法.首先,将改进的卷积注意力模块引入残差网络,建立三元组注意力特征提取网络;其次,在特征金字塔网络的结构上加入新的特征融合通道,设计多尺度特征融合模块,增强模型对多尺度目标的特征表达能力;最后,根据目标的重识别特征匹配与检测框匹配得到目标轨迹.仿真实验结果表明,该算法可有效提升无人机多目标跟踪的精度,具有较好的鲁棒性. 相似文献
5.
为解决多目标跟踪过程中因遮挡导致跟踪失败的问题,提出一种基于局部特征匹配的跟踪算法。在卡尔曼滤波跟踪框架下,根据目标数据关联的结果判断目标的状态并进行针对性处理。当目标处于相互遮挡的状态时,利用目标的局部模板在当前帧进行匹配获取目标候选区域,利用改进的距离加权彩色直方图计算候选区域与局部模板的相似度,结合直方图的相似度和卡尔曼预测确定目标的位置。实验结果表明,在满足实时性的要求下,该方法能够有效地处理目标的遮挡问题。 相似文献
6.
针对多目标跟踪中的未知杂波强度,提出了基于熵分布的杂波强度在线估计算法.利用有限混合模型对未知杂波强度建模,将仅依赖于混合权重的熵分布作为混合参数的先验;利用拉格朗日乘子法推导了混合权重在极大后验意义下的在线估计公式;以随机近似过程为在线估计策略,推导了基于缺失数据的分量均值和方差的在线估计公式.仿真结果表明,基于熵分布的杂波强度在线估计算法改进了概率假设密度滤波器在多目标跟踪中的性能. 相似文献
7.
基于颜色匹配的密集多目标快速跟踪算法 总被引:2,自引:0,他引:2
研究公共场所的监控场景问题,为了实现密集运动目标的快速准确的跟踪并有效排除目标碰撞、遮挡形成的干扰,提出了一种基于颜色匹配的密集多运动目标快速跟踪算法,运用形态学方法准确提取目标。根据卡尔曼原理得到目标在下一帧的预测位置,并确定搜索框的位置,然后在搜索框内运用简化的颜色匹配跟踪方案,提高匹配速率,实现密集运动目标的快速跟踪,且通过设定稳定度数组来迅速排除碰撞、遮挡情况形成的干扰,从而实现密集目标的快速准确跟踪。仿真表明,改进方法能在多目标跟踪过程中正确处理目标的碰撞、遮挡等问题,可实现公共场所的实时准确监控。 相似文献
8.
9.
针对在线多目标跟踪中的短时遮挡和检测器误差造成的误检和漏检问题,提出一种结合参数学习和运动预测的在线多目标跟踪算法。采用逐帧关联的方式,首先利用目标的历史轨迹建立卡尔曼滤波器模型预测目标当前帧的可能位置,然后计算目标和当前观测之间的关联度建立代价矩阵。对于多目标跟踪被建模为指派问题,采用Hungarain算法求解,此外制定策略处理目标出现、消失和遮挡等异常情况。而对于多目标跟踪系统中的参数,设计一种新的二分类参数学习方案。实验结果验证了参数学习的有效性以及对误检、漏检和遮挡的鲁棒性,并且与若干经典算法的性能比较中,在多个指标上表现出一定优势。 相似文献
10.
基于目标出生强度在线估计的多目标跟踪算法 总被引:1,自引:0,他引:1
针对多目标跟踪中未知的目标出生强度, 提出了基于Dirichlet分布的目标出生强度在线估计算法, 来改进概率假设密度滤波器在多目标跟踪中的性能. 算法采用有限混合模型来描述未知目标出生强度, 使用仅依赖于混合权重的负指数Dirichlet分布作为混合模型参数的先验分布. 利用拉格朗日乘子法推导了混合权重在极大后验意义下的在线估计公式; 混合权重在线估计过程利用了负指数Dirichlet分布的不稳定性, 驱使与目标出生数据不相关分量的消亡. 以随机近似过程为分量均值和方差的在线估计策略, 推导了基于缺失数据的分量均值与方差的在线估计公式. 在无法获得初始步出生目标先验分布的约束下, 提出了在混合模型上增加均匀分量的初始化方法. 以当前时刻的多目标状态估计值为出发点, 提出了利用概率假设密度滤波器消弱杂波影响的出生目标数据获取方法. 仿真结果表明, 提出的目标出生强度在线估计算法改进了概率假设密度滤波器在多目标跟踪中的性能. 相似文献
11.
12.
在多目标跟踪任务中,重识别(re-identification,Re-ID)效果通常依赖于检测性能的好坏,检测偏差会导致ReID特征模糊,从而降低重识别精度。特别是在尺度变化和频繁遮挡等复杂场景下,Re-ID鲁棒性不高,多目标跟踪效果较差。针对该问题,提出一种加强重识别的行人多目标跟踪算法。该算法以CenterNet为检测器,通过预测目标中心点热力图来检测目标位置,并设计检测偏差损失加强对预测热力图响应值的约束,以缓解因检测不准确导致的ReID特征模糊问题。为提高Re-ID鲁棒性,提出Re-ID可学习特征动态扩充策略。该策略通过自适应扩充目标中心的Re-ID可学习特征来提高特征质量,并减小Re-ID对中心点检测精度的依赖。在MOT16和MOT17测试集上进行验证,结果表明,算法能有效提升Re-ID性能,与主流算法相比具有更好的跟踪效果,且兼顾了实时性,达到25.6 FPS。 相似文献
13.
现有基于深度学习的多目标跟踪算法大多利用目标检测任务预测的边界框跟踪目标,当目标间存在遮挡时,边界框会产生重叠进而影响跟踪准确度,针对这个问题,提出了一种在线多类别逐点式多目标跟踪与分割(category-free point-wise multi-object tracking and segmentation,CPMOTS)算法。该算法摒弃了边界框的目标表征方式,利用实例分割的像素级掩码表征目标进行跟踪,网络采用并行结构同时分割与跟踪多类别目标,并保证了运行效率,这在真实场景中有很强的实用性。CPMOTS首先利用实例分割网络得到实例分割掩码,对其采样得到无序点集;然后将点集的特征输入跟踪网络得到判别性的实例级嵌入向量;最后将该嵌入向量通过直观高效的注意力模块以显式建模其通道间的依赖关系,自适应学习每个特征通道的重要程度,依照这个重要程度选择性地强化有用的特征,抑制无用的特征,实现通道特征重标定,从而提高算法的性能。在多目标跟踪与分割基准数据集KITTI MOTS的实验表明,CPMOTS跟踪的精度优于大部分其他对比方法,并达到了16 frame/s的近实时速度。 相似文献
14.
针对复杂环境下行人目标因检测器漏检和频繁遮挡而导致的数据关联不正确、跟踪实时性差的问题,提出了一种基于免锚检测的多目标跟踪算法.算法采用预测目标中心点热力图的方法实现目标检测定位,改善了因锚点框回归歧义所导致的漏检问题.同时在检测模型中嵌入深度表观特征提取分支,构建联合检测与跟踪的多任务网络用于提升实时性.为解决跟踪阶... 相似文献
15.
目标检测、特征提取与数据关联作为多目标跟踪网络中重要的组件,独立或部分联合地发挥作用,这种组件分离的方法虽取得了良好的跟踪效果,但增加了跟踪网络的复杂性,影响了跟踪速度。为提升行人多目标跟踪速度及维持跟踪精度,提出一种端到端链式行人多目标跟踪网络。将目标检测、特征提取与数据关联集成到一个统一的框架中,将连续2帧图片组成一个节点作为输入,直接回归出节点之间相同目标的成对边界框,利用相邻节点之间公共帧的强相似性,仅使用交并比匹配进行数据关联,以提高跟踪速度。使用多特征融合的双向特征金字塔,并在金字塔网络中引用改进可变形卷积,提高模型对目标形变的适应性。为解决正负样本不平衡及梯度贡献的差异,将focal loss与BalancedL1 Loss组成多任务学习损失函数以促进网络的均衡学习。在MOT17数据集上的实验结果表明,与DeepSORT、TubeTK、CenterTrack等网络相比,该网络可有效实现跟踪速度与精度的平衡,多目标跟踪精度为69.6,跟踪速度保持为21.6 frame/s。 相似文献
16.
多目标跟踪是计算机视觉领域的一个重要研究内容。JDE(joint detection and embedding)多目标跟踪算法推理速度和精度较高,但是当目标重叠或尺度较小时,该算法的跟踪效果较差。针对以上问题,提出了Attention-JDE,该模型结合了注意力机制、多尺度融合等思想,利用特征金字塔(feature pyramid)和空间金字塔池化(spatial pyramid pooling)提升模型对于小尺度目标的检测和跟踪能力,结合空间域注意力机制和通道域注意力机制改进模型在目标发生重叠时的跟踪效果。此外,还引入了Mish激活函数有效地降低跟踪时的ID切换次数。在MOT16数据集进行验证,结果表明,与原JDE方法以及其他主流方法相比,Attention-JDE具有更高的跟踪精度(MOTA),同时速度能够达到19.5 FPS,实时性较高。 相似文献
17.
为了获取交通视频中车辆的运动轨迹,提供道路动态交通信息,提出一种基于Yolo3目标检测和KCF目标预测相结合,关联历史轨迹预测结果和检测结果的长时间多目标车辆跟踪算法;对采用机器视觉获取的车辆轨迹非平滑现象,提出通过Savitzky-Golay滤波器对原始的车辆轨迹进行平滑优化。对比测试场景中车辆轨迹优化前后,优化后的轨迹在保留原有车辆运动特征的前提下,改善了轨迹平滑性,提供的动态交通信息更能反映车辆真实运动状况。 相似文献
18.
多目标跟踪技术是机器视觉应用领域的一个重要的课题,也是当前研究的热点之一,针对在线流水线计数,文章提出了一种实时多运动目标跟踪的新算法,它是根据目标图像投影积分曲线计算位移量,然后利用统计的方法求得目标的位移量;该算法满足了流水线计数对准确性、实时性和容错性的要求;同时给出了该新算法的实际应用,实验表明该算法效果显著. 相似文献
19.
为了提高地基云图分割的精度,提出一种对称式密集连接卷积神经网络的云图分割方法进行地基云图分割研究。提出的新的网络结构通过普通卷积层提取地基云图特征,通过连续的密集连接块和上采样模块对特征图进一步处理,通过并联方式融合网络浅层和网络深层的特征图从而实现对地基云图精确的分割。其中,密集块中采用跨层连接的方式实现了网络中所用层的特征传递,使得云图特征得到复用,同时一定程度上减轻了训练过程中的梯度消失问题,通过并联浅层网络和深层网络的特征图实现了对地基云图的进一步精确分割。实验结果表明,该方法与其他用于地基云图分割的机器学习方法相比,能够提高地基云图的分割准确率,具有良好的泛化效果。 相似文献
20.
Linux2.4内核防火墙的连接跟踪技术 总被引:1,自引:0,他引:1
从理论上深入论述了防火墙的实现原理和Linux操作系统下内核防火墙Netfilter的框架实现,以及防火墙的包过滤和状态检测等技术。针对网络存在的安全隐患,制定了相应的安全策略。通过对防火墙技术发展趋势的研究、并结合实际工作中碰到的一些问题,提出了防火墙系统的设计要求,增强了防火墙的易管理和快速响应性。 相似文献