首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neural network algorithms on principal component analysis (PCA) and minor component analysis (MCA) are of importance in signal processing. Unified (dual purpose) algorithm is capable of both PCA and MCA, thus it is valuable for reducing the complexity and the cost of hardware implementations. Coupled algorithm can mitigate the speed-stability problem which exists in most noncoupled algorithms. Though unified algorithm and coupled algorithm have these advantages compared with single purpose algorithm and noncoupled algorithm, respectively, there are only few of unified algorithms and coupled algorithms have been proposed. Moreover, to the best of the authors’ knowledge, there is no algorithm which is both unified and coupled has been proposed. In this paper, based on a novel information criterion, we propose two self-stabilizing algorithms which are both unified and coupled. In the derivation of our algorithms, it is easier to obtain the results compared with traditional methods, because it is not needed to calculate the inverse Hessian matrix. Experiment results show that the proposed algorithms perform better than existing coupled algorithms and unified algorithms.  相似文献   

2.
Recently, many unified learning algorithms have been developed to solve the task of principal component analysis (PCA) and minor component analysis (MCA). These unified algorithms can be used to extract principal component and if altered simply by the sign, it can also serve as a minor component extractor. This is of practical significance in the implementations of algorithms. Convergence of the existing unified algorithms is guaranteed only under the condition that the learning rates of algorithms approach zero, which is impractical in many practical applications. In this paper, we propose a unified PCA & MCA algorithm with a constant learning rate, and derive the sufficient conditions to guarantee convergence via analyzing the discrete-time dynamics of the proposed algorithm. The achieved theoretical results lay a solid foundation for the applications of our proposed algorithm.  相似文献   

3.
Recursive PCA for adaptive process monitoring   总被引:3,自引:0,他引:3  
While principal component analysis (PCA) has found wide application in process monitoring, slow and normal process changes often occur in real processes, which lead to false alarms for a fixed-model monitoring approach. In this paper, we propose two recursive PCA algorithms for adaptive process monitoring. The paper starts with an efficient approach to updating the correlation matrix recursively. The algorithms, using rank-one modification and Lanczos tridiagonalization, are then proposed and their computational complexity is compared. The number of principal components and the confidence limits for process monitoring are also determined recursively. A complete adaptive monitoring algorithm that addresses the issues of missing values and outlines is presented. Finally, the proposed algorithms are applied to a rapid thermal annealing process in semiconductor processing for adaptive monitoring.  相似文献   

4.
Dynamics of Generalized PCA and MCA Learning Algorithms   总被引:1,自引:0,他引:1  
Principal component analysis (PCA) and minor component analysis (MCA) are two important statistical tools which have many applications in the fields of signal processing and data analysis. PCA and MCA neural networks (NNs) can be used to online extract principal component and minor component from input data. It is interesting to develop generalized learning algorithms of PCA and MCA NNs. Some novel generalized PCA and MCA learning algorithms are proposed in this paper. Convergence of PCA and MCA learning algorithms is an essential issue in practical applications. Traditionally, the convergence is studied via deterministic continuous-time (DCT) method. The DCT method requires the learning rate of the algorithms to approach to zero, which is not realistic in many practical applications. In this paper, deterministic discrete-time (DDT) method is used to study the dynamical behaviors of the proposed algorithms. The DDT method is more reasonable for the convergence analysis since it does not require constraints as that of the DCT method. It is proven that under some mild conditions, the weight vector in these proposed algorithms will converge exponentially to principal or minor component. Simulation results are further used to illustrate the theoretical results.  相似文献   

5.
Principal/minor component analysis(PCA/MCA),generalized principal/minor component analysis(GPCA/GMCA),and singular value decomposition(SVD)algorithms are important techniques for feature extraction.In the convergence analysis of these algorithms,the deterministic discrete-time(DDT)method can reveal the dynamic behavior of PCA/MCA and GPCA/GMCA algorithms effectively.However,the dynamic behavior of SVD algorithms has not been studied quantitatively because of their special structure.In this paper,for the first time,we utilize the advantages of the DDT method in PCA algorithms analysis to study the dynamics of SVD algorithms.First,taking the cross-coupled Hebbian algorithm as an example,by concatenating the two cross-coupled variables into a single vector,we successfully get a PCA-like DDT system.Second,we analyze the discrete-time dynamic behavior and stability of the PCA-like DDT system in detail based on the DDT method,and obtain the boundedness of the weight vectors and learning rate.Moreover,further discussion shows the universality of the proposed method for analyzing other SVD algorithms.As a result,the proposed method provides a new way to study the dynamical convergence properties of SVD algorithms.  相似文献   

6.
In this paper, we first propose a differential equation for the generalized eigenvalue problem. We prove that the stable points of this differential equation are the eigenvectors corresponding to the largest eigenvalue. Based on this generalized differential equation, a class of principal component analysis (PCA) and minor component analysis (MCA) learning algorithms can be obtained. We demonstrate that many existing PCA and MCA learning algorithms are special cases of this class, and this class includes some new and simpler MCA learning algorithms. Our results show that all the learning algorithms of this class have the same order of convergence speed, and they are robust to implementation error.  相似文献   

7.
提出一种自稳定的双目的算法用以提取信号自相关矩阵的特征对.该算法可以通过仅仅改变一个符号实现主/次特征向量估计的转化,并且可以通过估计的特征向量的模值信息估计对应的特征值,从而实现特征对的提取.基于确定性离散时间方法对所提出的算法进行收敛性分析,并确定算法收敛的边界条件.与已有算法对比的仿真实验验证了所提出算法的收敛性能.  相似文献   

8.
This paper presents a unified theory of a class of learning neural nets for principal component analysis (PCA) and minor component analysis (MCA). First, some fundamental properties are addressed which all neural nets in the class have in common. Second, a subclass called the generalized asymmetric learning algorithm is investigated, and the kind of asymmetric structure which is required in general to obtain the individual eigenvectors of the correlation matrix of a data sequence is clarified. Third, focusing on a single-neuron model, a systematic way of deriving both PCA and MCA learning algorithms is shown, through which a relation between the normalization in PCA algorithms and that in MCA algorithms is revealed. This work was presented, in part, at the Third International Symposium on Artificial Life and Robotics, Oita, Japan, January 19–21, 1998  相似文献   

9.
Principal component analysis (PCA) and Minor component analysis (MCA) are similar but have different dynamical performances. Unexpectedly, a sequential extraction algorithm for MCA proposed by Luo and Unbehauen [11] does not work for MCA, while it works for PCA. We propose a different sequential-addition algorithm which works for MCA. We also show a conversion mechanism by which any PCA algorithms are converted to dynamically equivalent MCA algorithms and vice versa.  相似文献   

10.
This paper focuses on the problem of adaptive blind source separation (BSS). First, a recursive least-squares (RLS) whitening algorithm is proposed. By combining it with a natural gradient-based RLS algorithm for nonlinear principle component analysis (PCA), and using reasonable approximations, a novel RLS algorithm which can achieve BSS without additional pre-whitening of the observed mixtures is obtained. Analyses of the equilibrium points show that both of the RLS whitening algorithm and the natural gradient-based RLS algorithm for BSS have the desired convergence properties. It is also proved that the combined new RLS algorithm for BSS is equivariant and has the property of keeping the separating matrix from becoming singular. Finally, the effectiveness of the proposed algorithm is verified by extensive simulation results.  相似文献   

11.
次成分分析是信号处理领域一门重要的工具. 然而, 到目前为止能够进行多个次成分提取的算法并不多见, 一些现存算法还存在很多限制条件. 针对这些问题, 采用加权矩阵的方法将M\"oller算法扩展为多个次成分提取算法. 该算法对于输入信号的特征值没有要求, 而且在不需要模值限制措施的情况下, 仍然具有很好的收敛性. 仿真结果表明, 该算法可并行提取多个次成分, 而且收敛速度优于一些现有算法.  相似文献   

12.
We propose a constrained EM algorithm for principal component analysis (PCA) using a coupled probability model derived from single-standard factor analysis models with isotropic noise structure. The single probabilistic PCA, especially for the case where there is no noise, can find only a vector set that is a linear superposition of principal components and requires postprocessing, such as diagonalization of symmetric matrices. By contrast, the proposed algorithm finds the actual principal components, which are sorted in descending order of eigenvalue size and require no additional calculation or postprocessing. The method is easily applied to kernel PCA. It is also shown that the new EM algorithm is derived from a generalized least-squares formulation.  相似文献   

13.
利用压缩感知理论对图像进行测量和重构时,基于分块思想可有效提高重构速度,但同时会带来较强的块效应.为了解决该问题,在编码端提出了一种基于边缘检测的自适应分块压缩感知测量方案;在解码端提出了一种基于主成分分析(PCA)的平滑投影Landweber(SPL)重构法,该算法运用PCA训练出适合于图像结构的稀疏字典,用于进行硬阈值收缩,从而有效消除了块效应,提升了重构图像的质量.为了提高硬阈值收缩效率和减少训练复杂度,采用了3种基于块的PCA硬阈值收缩方案:全局PCA、局部PCA和分层PCA.仿真实验结果表明:所提出的自适应压缩感知测量方案与SPL重构法相结合,和传统分块压缩感知方案相比,峰值信噪比(PSNR)值均提升了1~3 dB;本文算法,无论在传统分块压缩感知方案下还是在自适应分块压缩感知方案下,与基于方向小波阈值收缩的SPL重构算法相比,均获得了更高的PSNR值.  相似文献   

14.
In this paper, we propose new adaptive algorithms for the extraction and tracking of the least (minor) or eventually, principal eigenvectors of a positive Hermitian covariance matrix. The main advantage of our proposed algorithms is their low computational complexity and numerical stability even in the minor component analysis case. The proposed algorithms are considered fast in the sense that their computational cost is O(np) flops per iteration where n is the size of the observation vector and p<n is the number of eigenvectors to estimate.We consider OJA-type minor component algorithms based on the constraint and non-constraint stochastic gradient technique. Using appropriate fast orthogonalization procedures, we introduce new fast algorithms that extract the minor (or principal) eigenvectors and guarantee good numerical stability as well as the orthogonality of their weight matrix at each iteration. In order to have a faster convergence rate, we propose a normalized version of these algorithms by seeking the optimal step-size. Our algorithms behave similarly or even better than other existing algorithms of higher complexity as illustrated by our simulation results.  相似文献   

15.
提出了一种基于主分量分析和属性距离和的孤立点检测算法。该方法首先通过主分量分析方法从众多属性中提取出满足累计贡献率的主分量,同时利用PCA变换矩阵把原始数据集转换到由主分量组成的新的特征空间上,之后对转换后的数据集用属性距离和的方法对孤立点进行检测。实验结果证明了基于主分量分析和属性距离和的孤立点检测算法的有效性。  相似文献   

16.
Algorithms for accelerated convergence of adaptive PCA   总被引:3,自引:0,他引:3  
We derive and discuss adaptive algorithms for principal component analysis (PCA) that are shown to converge faster than the traditional PCA algorithms due to Oja and Karhunen (1985), Sanger (1989), and Xu (1993). It is well known that traditional PCA algorithms that are derived by using gradient descent on an objective function are slow to converge. Furthermore, the convergence of these algorithms depends on appropriate choices of the gain sequences. Since online applications demand faster convergence and an automatic selection of gains, we present new adaptive algorithms to solve these problems. We first present an unconstrained objective function, which can be minimized to obtain the principal components. We derive adaptive algorithms from this objective function by using: (1) gradient descent; (2) steepest descent; (3) conjugate direction; and (4) Newton-Raphson methods. Although gradient descent produces Xu's LMSER algorithm, the steepest descent, conjugate direction, and Newton-Raphson methods produce new adaptive algorithms for PCA. We also provide a discussion on the landscape of the objective function, and present a global convergence proof of the adaptive gradient descent PCA algorithm using stochastic approximation theory. Extensive experiments with stationary and nonstationary multidimensional Gaussian sequences show faster convergence of the new algorithms over the traditional gradient descent methods. We also compare the steepest descent adaptive algorithm with state-of-the-art methods on stationary and nonstationary sequences.  相似文献   

17.
Principal component analysis (PCA) and minor component analysis (MCA) are a powerful methodology for a wide variety of applications such as pattern recognition and signal processing. In this paper, we first propose a differential equation for the generalized eigenvalue problem. We prove that the stable points of this differential equation are the eigenvectors corresponding to the largest eigenvalue. Based on this generalized differential equation, a class of PCA and MCA learning algorithms can be obtained. We demonstrate that many existing PCA and MCA learning algorithms are special cases of this class, and this class includes some new and simpler MCA learning algorithms. Our results show that all the learning algorithms of this class have the same order of convergence speed, and they are robust to implementation error.  相似文献   

18.
一种遥感影像裸土地特征增强方法   总被引:1,自引:0,他引:1  
针对常用特征增强算法难以将裸土地在特定波段突出出来的问题,提出了一种适用于多光谱遥感影像的裸土地特征增强算法。基本思路是采用根据光谱距离进行预分割,估计裸土地和非裸土地样本,针对非裸土地样本进行白化处理,基于白化数据中的裸土地样本进行主分量变换,裸土地信息将被集中并突出于变换结果的第一分量。对算法的具体流程进行了探讨,并通过一个实例进行了验证。  相似文献   

19.
Linear multilayer independent component analysis (LMICA) is an approximate algorithm for ICA. In LMICA, approximate independent components are efficiently estimated by optimizing only highly dependent pairs of signals when all the sources are super-Gaussian. In this paper, the nonlinear functions in LMICA are generalized, and a new method using adaptive PCA is proposed for the selection of pairs of highly dependent signals. In this method, at first, all the signals are sorted along the first principal axis of their higher-order correlation matrix. Then, the sorted signals are divided into two groups so that relatively highly correlated signals are collected in each group. Lastly, each of them is sorted recursively. This process is repeated until each group consists of only one or two signals. Because a well-known adaptive PCA algorithm named PAST is utilized for calculating the first principal axis, this method is quite simple and efficient. Some numerical experiments verify the effectiveness of LMICA with this improvement.  相似文献   

20.
An adaptive learning algorithm for principal component analysis   总被引:2,自引:0,他引:2  
Principal component analysis (PCA) is one of the most general purpose feature extraction methods. A variety of learning algorithms for PCA has been proposed. Many conventional algorithms, however, will either diverge or converge very slowly if learning rate parameters are not properly chosen. In this paper, an adaptive learning algorithm (ALA) for PCA is proposed. By adaptively selecting the learning rate parameters, we show that the m weight vectors in the ALA converge to the first m principle component vectors with almost the same rates. Comparing with the Sanger's generalized Hebbian algorithm (GHA), the ALA can quickly find the desired principal component vectors while the GHA fails to do so. Finally, simulation results are also included to illustrate the effectiveness of the ALA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号