首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Results obtained prove that respiration stimulation of mitochondria Ca2+, Sr2+, Mn2+ is determined by transport of these cations to the indicated subcellular structures with participation of Ca2(+)-uniporter. Effect of Cd2+ on respiration of mitochondria is of two-phase character. Concentration of Cd2+ being above 100 microM the stimulation phase is accompanied by the further inhibition of mitochondria respiration. La3+ inhibits respiration of mitochondria. However La3+ and Cd2+ stimulate H+ production by mitochondria, that is not blocked by ruthenium red (10 microM). Probably, the effect of La3+ and Cd2+ on respiration of mitochondria is determined by the change of proton conductivity of mitochondrion membrane. Direct inhibiting effect of Cd2+ on the respiration chain of mitochondria has been established.  相似文献   

2.
This paper reports an investigation on the regulation of the mitochondrial cyclosporin A-sensitive permeability transition pore (MTP). Energized, coupled rat liver mitochondria incubated in sucrose medium in the presence of phosphate maintain a high proton electrochemical gradient (delta microH) and a low permeability to solutes. Addition of a small (10-20 microM) Ca2+ pulse leads to a transient membrane depolarization. After Ca2+ accumulation, a high delta microH is recovered, and mitochondria remain coupled indefinitely. Yet, addition of fully uncoupling concentrations of carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) brings about MTP opening within seconds. This finding confirms that MTP opening is the consequence rather than the cause of membrane depolarization, and allowed us to study the operation of the MTP in a synchronized population of mitochondria, since pore opening can be triggered by the addition of uncoupler under a series of experimental conditions. We find that three regulatory sites can be defined: (i) an internal Me2+ binding site: when this site is occupied by Ca2+, the pore "open" probability increases, while other Me2+ ions (Sr2+, Mn2+) have an inhibitory effect; (ii) an external Me2+ binding site: when this site is occupied by Me2+ ions, including Ca2+, the pore open probability decreases; (iii) an independent cyclosporin A binding site: when this site is occupied by cyclosporin A the pore open probability decreases. We show that at variance from the case of cyclosporin A, MTP inhibition by the phospholipase A2 inhibitors nupercaine and trifluoperazine is Ca(2+)-competitive and is presumably related to interference by these drugs with Ca2+ binding to the internal regulatory site.  相似文献   

3.
As determined by EPR, malic enzyme from pigeon liver binds Mn2+ with a half-site stoichiometry of two tight binding sites (KD=6 to 10 mum) per enzyme tetramer and at two to four weak binding sites (KD=0.43 to 1.34 mM). The activation of malic enzyme by Mn2+ at high levels of L-malate shows biphasic kinetics yielding two activator constants for Mn2+. The dissociation constants of Mn2+ for both classes of sites are of the same order as the kinetically determined activator constants of Mn2+, indicating active site binding at both classes of binding sites. The binding of Mn2+ to the tight sites enhances the paramagnetic effect of Mn2+ on 1/T1 of water protons by a factor (epsilon) of 17, while binding at the weak sites yields a smaller epsilon of 11. The coenzymes TPN and TPNH have no effects on epsilon, while the carboxylic acid substrates L-malate and pyruvate and the inhibitors D-malate and oxalate significantly decrease epsilon. TPNH causes a 38-fold tightening of binding of the substrate L-malate to the enzyme-Mn2+ complex, consistent with the previously described highly ordered kinetic scheme, but only a 2-fold tightening of binding of the competitive inhibitor D-malate. The dissociation constant of L-malate from the quaternary E-Mn2+-TPNH-L-malate complex (32 muM) agrees with the Km of L-malate (25 muM), indicating active site binding. The dissociation constants of pyruvate from the ternary E-Mn2+-pyruvate complex (12 mM) and from the quaternary E-Mn2+-TPN-pyruvate complex (20 mM) are similar to the Km of pyruvate (5 mM), also indicating active site binding and a less highly ordered kinetic scheme for the reactions of pyruvate than for those of L-malate. Analysis of the frequency dependence of 1/T1 of water protons indicates that two fast exchanging water ligands remain coordinated to Mn2+ in the binary E-Mn2+ complex. The binding of the substrates L-malate and pyruvate and of the transition state analog oxalate to the E-Mn2+ complex decrease the number of fast exchanging water ligands on Mn2+ by approximately 1, but the binding of D-malate has no significant effect on this parameter, indicating the occlusion or replacement of a water ligand of the enzyme-bound Mn2+ by a properly oriented substituent on C-2 of the substrate. Occlusion rather than replacement of a water ligand by pyruvate is established by studies of 1/T1 of 13COO- and 13CO-enriched pyruvate which indicate second sphere Mn2+ to pyruvate distances of 4.6 A (COO-) and 4.8 A (CO) in the ternary enzyme-Mn2+-pyruvate complex. Formation of the quaternary complex with TPN increases these distances by 0.8 A, indicating the participation of a second sphere enzyme-Mn2+-(H2O)-pyruvate complex in catalysis. Thus, malic enzyme, like five other enzymes which utilize metals to polarize carbonyl groups, forms a second sphere complex with its substrate.  相似文献   

4.
To examine the effect of endurance training (6 wk of treadmill running) on regional mitochondrial adaptations within skeletal muscle, subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria were isolated from trained and control rat hindlimb muscles. Mitochondrial oxygen consumption (VO2) was measured polarographically by using the following substrates: 1 mM pyruvate + 1 mM malate (P+M), 10 mM 2-oxoglutarate, 45 microM palmitoyl-DL-carnitine + 1 mM malate, and 10 mM glutamate. Spectrophotometric assays of cytochrome-c reductase and NAD-specific isocitrate dehydrogenase (IDH) activity were also performed. Maximal (state III) and resting (state IV) VO2 were lower in SS than in IMF mitochondria in both trained and control groups. In SS mitochondria, training elicited significant 36 and 20% increases in state III VO2 with P+M and glutamate, respectively. In IMF mitochondria, training resulted in a smaller (20%), yet significant, increase in state III VO2 with P+M as a substrate, whereas state III VO2 increased 33 and 27% with 2-oxoglutarate and palmitoyl-DL-carnitine + malate, respectively. Within groups, cytochrome-c reductase and IDH activities were lower in SS when compared with IMF mitochondria. Training increased succinate-cytochrome-c reductase in both SS (30%) and IMF mitochondria (28%). IDH activity increased 32% in the trained IMF but remained unchanged in SS mitochondria. We conclude that endurance training promotes substantial changes in protein stoichiometry and composition of both SS and IMF mitochondria.  相似文献   

5.
通过对软锰矿中 Mn2 +、Mn3+、Mn4 +的溶解条件进行研究 ,建立了软锰矿中 3种价态锰的测定方法  相似文献   

6.
In rats with third-degree burns, the blood glucose level increased remarkably, with a concomitant suppression of insulin secretion from the pancreas after an oral glucose load. The energy charge (ATP + 1/2 ADP/ATP + ADP + AMP) levels of the kidney decreased to 0.659 as compared with 0.858 of controls at 8 hr after the burn (p less than 0.001). The phosphorylative activity of the kidney mitochondria fell to one third of controls at 8 hr after the burn (p less than 0.001), and that of heart mitochondria decreased to approximately 70% (p less than 0.005); the fall in liver and brain was less remarkable. The decrease in mitochondrial phosphorylative activity was accompanied by a reduction in the respiratory control ratio, P/O ratio, and state 3 respiration. The concentrations of cytochrome a(+a3) in the kidney mitochondria decreased to 69.9% of controls at 8 hr after the burn (p less than 0.001), those of cytochrome b to 82.6%, and those of cytochrome c + c1 to 75.3% (p less than 0.001). The decreased energy charge and oxidative phosphorylation of the kidney in burned rats were remarkably restored by subcutaneous administration of insulin. It is suggested that a reduction in insulin secretion from the pancreas may play an important role in initiating an impairment of adenine nucleotide and mitochondrial metabolism of the kidney.  相似文献   

7.
Galactosyltransferase, which functions as the catalytic component of lactose synthase and in the glycosylation of glycoproteins, has been previously reported to have an absolute dependence on Mn2+ for activity, with a Kd for Mn2+ (10(-3) M) 2 to 3 orders of magnitude greater than the physiological range of Mn2+ concentrations (v 10(-6) M). Reinvestigation of the metal ion dependence of this enzyme has shown that Zn2+, Cd2+, Fe2+, Co2+, and Pr3+ also produce activation, although with lower activities at saturation than that attained with Mn2+. Velocity against metal ion concentration curves for all metals, including Mn2+, are sigmoid, suggesting the presence of two or more activating metal binding sites on the enzyme. The presence of two sites is confirmed by studies using both Mn2+ and Ca2+. While galactosyltransferase is inactive in the presence of Ca2+ alone, at low concentrations of Mn2+ (10(-5) M), enzyme activity is stimulated by Ca2+. A more detailed investigation by steady state kinetics has revealed that there is a tight binding site for Mn2+ (site I: Kd of 2 X 10(-6) M) from which Ca2+ is excluded, and a site at which Ca2+ can replace Mn2+ (site II: Kd for Ca2+ of 1.76 X 10(-3) M), to which metal binding has a specific synergistic effect on UDP-galactose binding, possibly as a result of the formation of an enzyme-Ca2+-UDP-galactose bridge complex. The site I Mn2+, site II Ca2+-activated enzyme has a maximum velocity similar to that of the Mn2+-activated enzyme, and is the enzyme form that must act in lactose synthesis in vivo. A trypsin-degraded form of galactose transferase (galactosyltransferase-T) (Powell, J.T., and Brew, K. (1974) Eur. J. Biochem. 48, 217-228) appears to lack site I and is activated by Ca2+ in the absence of Mn2+.  相似文献   

8.
Development of efficient imaging techniques to trace neuronal connections would be very useful. Manganese ion (Mn2+) is an excellent T1 contrast agent for magnetic resonance imaging (MRI). Four reports utilizing radioactive Mn2+ in fish and rat brain indicate that Mn2+ may be useful for tracing neuronal connections. Therefore, the purpose of this work was to determine if Mn2+ can be used as an in vivo MRI neuronal tract tracer. The results indicate that topical administration of MnCI2 solution to the naris of mice as well as to the retinal ganglion cells via intravitreal injection leads to enhancement of contrast along the respective pathways. Therefore, application of Mn2+ to neurons allows the use of MRI to visualize neuronal connections.  相似文献   

9.
Two new intermediates are described which form in the dark as precursors to the light-induced assembly of the photosynthetic water oxidation complex (WOC) from the inorganic components. Mn2+ binds to the apo-WOC-PSII protein in the absence of calcium at a high-affinity site. By using a hydrophobic chelator to remove Mn2+ and Ca2+ from the WOC and nonspecific Fe3+, a new EPR signal becomes visible upon binding of Mn2+ to this site, characterized by six-line 55Mn hyperfine structure (DeltaHpp = 96 +/- 1 G) and effective g = 8.3. These features indicate a high-spin electronic ground state (S = 5/2) for Mn2+ and a strong ligand field with large anisotropy. This signal is eliminated if excess Ca2+ or Mg2+ is present. A second Mn2+ EPR signal forms in place of this signal upon addition of Ca2+ in the dark. The yield of this Ca-induced Mn signal is optimum at a ratio of 2 Mn/PSII, and saturates with increasing [Ca2+] >/= 8 mM, exhibiting a calcium dissociation constant of KD = 1.4 mM. The EPR signal of the Ca-induced Mn center at 25 K is asymmetric with major g value of approximately 2.04 (DeltaHpp = 380 G) and a shoulder near g approximately 3.1. It also exhibits resolved 55Mn hyperfine splitting with separation DeltaHpp = 42-45 G. These spectral features are diagnostic of a variety of weakly interacting Mn2(II, II) pairs with electronic spins that are magnetic dipolar coupled in the range of intermanganese separations 4.1 +/- 0.4 A, and commonly associated with one or two carboxylate bridges. The calcium requirement for induction of the Mn2(II,II) signal matches the value observed for steady-state O2 evolution (Michaelis constant, KM approximately 1.4 mM), and for light-induced assembly of the WOC by photoactivation. The Ca-induced Mn2(II,II) center is a more efficient electron donor to the photooxidized tyrosine radical, TyrZ+, than is the mononuclear Mn center present in the absence of Ca2+. The Ca-induced Mn2(II,II) signal serves as a precursor for photoactivation of the functional WOC and is abolished by the presence of Mg2+. Formation of the Mn2(II,II) EPR signal by addition of Ca2+ correlates with reduction of flash-induced catalase activity, indicating that calcium modulates the accessibility or reactivity of the Mn2(II,II) core with H2O2. We propose that calcium organizes the binding site for Mn ions in the apo-WOC protein and may even interact directly with the Mn2(II,II) pair via solvent or protein-derived bridging ligands.  相似文献   

10.
采用共沉淀-高温固相法制备LiNi0.6Co0.1Mn0.3O2锂离子正极材料,并使用X 射线衍射仪(XRD)和扫描电镜(SEM)技术分别表征其结构和形貌.然后将所得LiNi0.6Co0.1Mn0.3O2正极材料组装成扣式电池,并表征其电化学性能,探讨烧结温度和锂配量对其电化学性能的影响.结果表明:所得LiNi0.6Co0.1Mn0.3O2正极材料的放电比容量随烧结温度的升高而增大,且在900℃时表现出最佳的电化学性能.室温下,1C倍率下,锂配量(n(Li)/n(Ni+ Co+ Mn)=1.09)时,正极材料的首次放电容量为143.7 mAh/g,50次循环后,正极材料的放电比容量仍有141.3 mAh/g,容量保持率为98.3%.  相似文献   

11.
Manganese (Mn) complexes are unstable and dissociate in vivo. Because of the release of this metal, there exists some concern about the potential long-term neurotoxicity associated with the use of Mn-based contrast agents. This latter problem arises because manganese is known to accumulate in specific regions of the brain of people intoxicated by this metal. It was previously demonstrated that Mn can accumulate in the mice brain after administration of 5 micromol/kg of MnCl2, Mn-diethylenetriaminepentaacetate (Mn-DTPA), or Mn-dipyridoxal diphosphate (Mn-DPDP). In order to better characterize the behavior of Mn complexes after administration, this study assesses the regional distribution of Mn in the brain after i.v. injection of a single dose of MnCl2 or Mn-DTPA. Male Wistar rats received an i.v. injection of 5 micromol/kg of 54Mn as MnCl2 or Mn-DTPA. The rats were killed at one and two weeks post exposure. The distribution of the radioactivity in the slices was monitored by autoradiography. For both MnCl2 or Mn-DTPA, we observed that the radioactivity was dispersed in the entire brain, but the radioactivity was higher in several regions. No difference was observed between MnCl2 or Mn-DTPA in the regional distribution of Mn, and no difference was observed between the two times of exposure (1 week or 2 weeks). The uptake of Mn was minimal in corpus callosum. Maximal Mn concentration was observed in the hippocampal region, thalamus, colliculi, amygdala, olfactory nuclei, and cerebellum.  相似文献   

12.
The process of photoactivation, the assembly of a functional water-oxidizing complex (WOC) from the apoproteins of photosystem II of higher plants and inorganic cofactors (Mn2+, Ca2+, and Cl-), was known from earlier works to be a two-step kinetic process, requiring two light-induced processes separated by a slower dark period. However, these steps had not been directly resolved in any kinetic experiment, until development of an ultrasensitive polarographic O2 electrode and synthesis of an improved chelator for cofactor removal allowed direct kinetic resolution of the first pre-steady state intermediate [Ananyev, G. M. & Dismukes, G. C. (1996a) Biochemistry 35, 4102-4109]. Herein, the dependence of the rates of each of the first two light steps and the dark step of photoactivation was directly determined in spinach PSII membranes over a range of calcium and manganese concentrations at least 10-fold lower than those possible using commercial O2 electrodes. The following results were obtained. (1) One Mn2+ ion binds and is photooxidized to Mn3+ at a high-affinity site, forming the first light-induced intermediate, IM1. Formation of IM1 is coupled to the dissociation of a bound Ca2+ ion either located in the Mn site or coupled to it. (2) The inhibition constant for Ca2+ dissociation from this site is equal to 1.5 mM. (3) The dissociation constant of Mn2+ at this high-affinity site is equal to 8 microM at the optimum calcium concentration for O2-evolving activity of 8 mM, in agreement with the high-affinity site for electron donation to PSII. (4) Prior to the next photolytic step, one Ca2+ ion must bind at its effector site so that stable photooxidation of a second Mn2+ ion can occur, forming the second light-induced intermediate, IM2. This dark process is the rate-determining step. (5) The Michaelis constant for recovery of O2 evolution by Ca2+ binding at this effector site (Km) is equal to 1.4 mM, a value that is the same as that measured for the calcium requirement for O2 evolution in intact PSII. (6) The low quantum yield for the formation of IM2 from IM1 increases linearly with the duration of the dark period up to the longest period we could examine (10 s). Accordingly, the rate limitation in the second photolytic step originates from a slow calcium-induced dark rearrangement of the first intermediate, IM1, which we propose to be a protein conformational change that allows stable binding of the next Mn2+ ion. We further propose that the single Ca2+ ion which is required for assembly of the Mn4 cluster is equivalent to the Ca2+ ion which functions at the "gatekeeper" site in intact O2-evolving centers, where it plays a role in limiting substrate access to the Mn4 cluster [Sivaraja, M., et al. (1989) Biochemistry 28, 9459-9464; Tso, J., et al., (1991) Biochemistry 30, 4734-4739]. A molecular model for photoactivation is proposed and discussed.  相似文献   

13.
It is shown that acetylcholine, noradrenaline and serotonin have no effect on the lactate (LDG) and malate dehydrogenase (MDG) activities in mitochondria, mitoblasts and supernatant fluid of the rat brain tissue. A combined effect of noradrenaline and serotonin with acetylcholine increases the activity of MDG in the mitochondria but does not change that of LDG. In the mitoblast MDG was less active. After treatment with some detergents noradrenaline reduces that LDG activity in the mitochondria and supernatant fluid and did not change the MDG one. Serotonin enhances the LDG and decreased the MDG activity. In the presence of Mg2+ an increase in the LDG activity in supernatant fluid is accompanied by a decrease in the mitochondria while the MDG activity is unchanged. Ca2+ activates MDG in the mitochondria and did not affect the LDG activity.  相似文献   

14.
Illuminating Ca2+-depleted photosystem (PS) II membranes generated two new EPR signals at g = 11 and 15 by perpendicular and parallel polarization modes, respectively. Two turnovers of the oxygen evolving center (OEC) beyond the modified S2' state are required for the appearance of these signals. The formation of the signals correlated with that of an asymmetric (singlet-like) EPR signal observed at g approximately 2. Spectral simulation indicated that both signals arose from a transition between |2(+/-)> levels with intradoublet splitting of Delta = 0.276 cm-1 in an S = 2 spin system. Furthermore, the two signals in parallel and perpendicular modes were formed at the same time, indicating that the same metal center was responsible. The molecular z-axis of the S = 2 spin system for the signals was almost parallel to the plane of thylakoid membranes. These results indicate that the Mn cluster in the photosynthetic oxygen evolving center is the source of the new EPR species which may be a Mn(IV)-Mn(IV) or Mn(III)-Mn(III) dimer or a Mn(III) monomer. Redox events of the Mn cluster in the Ca2+-depleted PS II are discussed based on these observations.  相似文献   

15.
The molecular mechanisms by which Ca2+ and metal ions interact with the binding sites that modulate the tight junctions (TJs) have not been fully described. Metal ions were used as probes of these sites in the frog urinary bladder. Basolateral Ca2+ withdrawal induces the opening of the TJs, a process that is abruptly terminated when Ca2+ is readmitted, and is followed by a complete recovery of the TJ seal. Mg2+ and Ba2+ were incapable of keeping the TJ sealed or of inducing TJ recovery. In addition, Mg2+ causes a reversible concentration-dependent inhibition of the Ca2+-induced TJ recovery. The effects of extracellular Ca2+ manipulation on the TJs apparently is not mediated by changes of cytosolic Ca2+ concentration. The transition elements, Mn2+ and Cd2+, act as Ca2+ agonists. In the absence of Ca2+, they prevent TJ opening and almost immediately halt the process of TJ opening caused by Ca2+ withdrawal. In addition, Mn2+ promotes an almost complete recovery of the TJ seal. Cd2+, in spite of stabilizing the TJs in the closed state and halting TJ opening, does not promote TJ recovery, an effect that apparently results from a superimposed toxic effect that is markedly attenuated by the presence of Ca2+. The interruption of TJ opening caused by Ca2+, Cd2+, or Mn2+, and the stability they confer to the closed TJs, might result from the interaction of these ions with E-cadherin. Addition of La3+ (2 microM) to the basolateral Ca2+-containing solution causes an increase of TJ permeability that fully reverses when La3+ is removed. This effect of La3+, observed in the presence of Ca2+ (1 mM), indicates a high La3+ affinity for the Ca2+-binding sites. This ability of La3+ to open TJs in the presence of Ca2+ is a relevant aspect that must be considered when using La3+ in the evaluation of TJ permeability of epithelial and endothelial membranes, particularly when used during in vivo perfusion or in the absence of fixatives.  相似文献   

16.
Nitric oxide (NO) is a potent inhibitor of thrombin-induced increase in cytoplasmic free Ca2+ concentration and aggregation in platelets, but the precise mechanism of this inhibition is unclear. To measure Ca2+/Mn2+ influx in intact platelets and to monitor Ca2+ uptake into the stores in permeabilized platelets, fura-2 was used. In intact platelets, maximal capacitative Ca2+ and Mn2+ influx developed rapidly (within 30 s) after fast release of Ca2+ from the stores with thrombin (0.5 U/mL) or slowly (within 5 to 10 minutes) following passive Ca2+ leak caused by inhibition of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) with 30 micromol/L 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ). NO (1 micromol/L) inhibited capacitative Ca2+ and Mn2+ influx independently of the time after thrombin application. In contrast, the effect of NO on BHQ-induced Ca2+ and Mn2+ influx was observed only during the first few minutes after BHQ application and completely disappeared when capacitative cation influx reached its maximum. In Ca2+-free medium, NO reduced the peak Ca2+ rise caused by thrombin and significantly promoted Ca2+ back-sequestration into the stores. Both effects disappeared in the presence of BHQ. Inhibition of guanylate cyclase with H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (10 micromol/L) attenuated but did not prevent the effects of NO on cytoplasmic free Ca2+ concentration. Inhibition of Ca2+ uptake by mitochondria did not change the effects of NO. In permeabilized platelets, NO accelerated back-sequestration of Ca2+ into the stores after inositol-1,4,5-trisphosphate-induced Ca2+ release or after addition of Ca2+ (1 micromol/L) in the absence of inositol-1,4,5-trisphosphate. The effect of NO depended on the initial rate of Ca2+ uptake and on the concentration of ATP and was abolished by BHQ, indicating the direct involvement of SERCA. These data strongly support the hypothesis that NO inhibits store-operated cation influx in human platelets indirectly via acceleration of SERCA-dependent refilling of Ca2+ stores.  相似文献   

17.
It was shown recently [Goussias, C., Ioannidis, N., and Petrouleas, V. (1997) Biochemistry 36, 9261-9266] that incubation of photosystem II preparations with NO at -30 degrees C in the dark results in the formation of a new intermediate of the water-oxidizing complex. This is characterized by an EPR signal centered at g = 2 with prominent manganese hyperfine structure. We have examined the detailed structure of the signal using difference EPR spectroscopy. This is facilitated by the observations that NO can be completely removed without decrease or modification of the signal, and illumination at 0 degree C eliminates the signal. The signal spans 1600 G and is characterized by sharp hyperfine structure. 14NO and 15NO cw EPR combined with pulsed ENDOR and ESEEM studies show no detectable contributions of the nitrogen nucleus to the spectrum. The spectrum bears similarities to the experimental spectrum of the Mn(II)-Mn(III) catalase [Zheng, M., Khangulov, S. V., Dismukes, G. C., and Barynin, V. V. (1994) Inorg. Chem. 33, 382-387]. Simulations allowing small variations in the catalase-tensor values result in an almost accurate reproduction of the NO-induced signal. This presents strong evidence for the assignment of the latter to a magnetically isolated Mn(II)-Mn(III) dimer. Since the starting oxidation states of Mn are higher than II, we deduce that NO acts effectively as a reductant, e.g., Mn(III)-Mn(III) + NO--> Mn(II)-Mn(III) + NO+. The temperature dependence of the nonsaturated EPR-signal intensity in the range 2-20 K indicates that the signal results from a ground state. The cw microwave power saturation data in the range 4-8 K can be interpreted assuming an Orbach relaxation mechanism with an excited state at delta = 42 K. Assuming antiferromagnetic coupling, -2JS1.S2, between the two manganese ions, J is estimated to be 10 cm-1. The finding that an EPR signal from the Mn cluster of PSII can be clearly assigned to a magnetically isolated Mn(II)-Mn(III) dimer bears important consequences in interpreting the structure of the Mn cluster. Although the signal is not currently assigned to a particular S state, it arises from a state lower than S1, possibly lower than S0, too.  相似文献   

18.
We have compared the active sites of Escherichia coli Fe-substituted (Mn)superoxide dismutase [Fe-sub-(Mn)SOD] and Fe-SOD to elucidate the basis for the inactivity of Fe-sub-(Mn)SOD, despite its apparent similarity to Fe-SOD. The active site of (reduced) Fe2+-sub-(Mn)SOD is qualitatively similar to that of native Fe2+-SOD, indicating similar active site structures and coordination environments for Fe2+. Its nativelike pK is indicative of nativelike local electrostatics, and consistent with Fe2+-sub-(Mn)SOD's retention of ability to reduce O2*- [Vance and Miller (1998) J. Am. Chem. Soc. 120(3), 461-467]. The active site of (oxidized) Fe3+-sub-(Mn)SOD differs from that of Fe3+-SOD with respect to the EPR signals produced at both neutral and high pH, indicating different coordination environments for Fe3+. Although Fe3+-sub-(Mn)SOD binds the small anions N3- and F-, the KD for N3- is tighter than that of Fe3+-SOD, suggesting that the (Mn)SOD protein favors anion binding more than does the (Fe)SOD protein. The EPR spectral consequences of binding F- are reminiscent of those observed upon binding the first F- to Fe3+-SOD, but the EPR spectrum obtained upon binding N3- is different, consistent with crystallographic observation of a different binding mode for N3- in Thermus thermophilus Mn-SOD than Fe-SOD [Lah, M., et al. (1995) Biochemistry 34, 1646-1660]. We find a pK of 8.5 to be associated with dramatic changes in the EPR spectrum. In addition, we confirm the pK between 6 and 7 that has previously been reported based on changes in the optical signal and N3- binding [Yamakura, F., et al. (1995) Eur. J. Biochem. 227, 700-706]. However, this latter pK appears to be associated with much subtler changes in the EPR spectrum. The non-native pKs observed in Fe3+-sub-(Mn)SOD and the differences in the Fe3+ coordination indicated by the EPR spectra are consistent with Fe3+-sub-(Mn)SOD's inability to oxidize O2*- and suggest that its low E degrees is due to perturbation of the oxidized state.  相似文献   

19.
Efficient phosphodiester bond cleavage activity by the hammerhead ribozyme requires divalent cations. Toward understanding this metal ion requirement, the Mn2+-binding properties of hammerhead model ribozymes have been investigated under dilute solution conditions, using electron paramagnetic resonance spectroscopy (EPR) to detect free Mn2+ in the presence of added ribozyme. Numbers and affinities of bound Mn2+ were obtained at pH 7.8 (5 mM triethanolamine) in the presence of 0, 0.1, and 1.0 M NaCl for an RNA-DNA model consisting of a 13-nucleotide DNA "substrate" hybridized to a 34-nucleotide RNA "enzyme" [Pley, H. W., Flaherty, K. M., and McKay, D. B. (1994) Nature 372, 68-74]. In 0.1 M NaCl, two classes of Mn2+ sites are found with n1 = 3.7 +/- 0.4, Kd(1) = 4 +/- 1 microM (type 1) and n2 = 5.2 +/- 0.4, Kd(2) = 460 +/- 130 microM (type 2). The high-affinity type 1 sites are confirmed for an active RNA-RNA hybrid (34-nucleotide RNA enzyme:13-nucleotide RNA substrate) by EPR measurements at low Mn2+ concentrations. Decreasing NaCl concentration results in an increased number of bound Mn2+ per hammerhead. By contrast, a binding titration in 1 M NaCl indicates that a single Mn2+ site with apparent Kd approximately 10 microM is populated in low concentrations of Mn2+, and apparent cooperative effects at higher Mn2+ concentrations result in population of a similar total number of Mn2+ sites (n1 = 8-10) as found in 0.1 M NaCl. Mn2+-dependent activity profiles are similar for the active RNA-RNA hybrid in 0.1 and 1 M NaCl. Correlation with binding affinities determined by EPR indicates that hammerhead activity in 0.1 M NaCl is only observed after all four of the high-affinity Mn2+ sites are occupied, rises with population of the type 2 sites, and is independent of Mn2+ concentrations corresponding to > 8-9 Mn2+ bound per hammerhead. Equivalent measurements in 1 M NaCl demonstrate a rise in activity with the cooperative transition observed in the Mn2+ binding curve. These measurements indicate that, over this NaCl concentration range, hammerhead ribozyme activity is influenced by population of a specific set of divalent cation sites.  相似文献   

20.
In non-excitable cells, a Ca2+ entry pathway is opened after the depletion of intracellular Ca2+ store sites. We have tried to estimate the sensitivity of this pathway to Ca2+ release using bovine aortic endothelial cells. Single application of a high concentration (30 microM) of ATP released almost all stored Ca2+ in Ca(2+)-free extracellular solution, whereas a low concentration of ATP (30 nM) produced a partial (57.3 +/- 3.0%) release of Ca2+. By 10 min of Ca2+ re-perfusion, the Ca2+ store site was reloaded to 97.1% of its initial filling state. When thapsigargin was applied to this cell in Mn2+ solution, Mn(2+)-induced quenching of fura-2 dye started when 19.3 +/- 5.3% of Ca2+ release, produced by 30 nM ATP, had occurred. Therefore, Ca2+ release required for Mn2+ entry was estimated as 11.1 +/- 3.0% of stored Ca2+. These results indicate that intracellular Ca2+ concentration is controlled dynamically by simultaneously occurring Ca2+ release and entry in bovine aortic endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号