首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The film structure and H bonding of high deposition rate a-SiGe:H i-layers, deposited by HWCVD and containing ~ 40 at.% Ge, have been investigated using deposition conditions which replicate those used in n-i-p solar cell devices. Increasing the germane source gas depletion in HWCVD causes not only a decrease in solar cell efficiency from 8.64% to less than 7.0%, but also an increase in both the i-layer H preferential attachment ratio (PA) and the film microstructure fraction (R?). Measurements of the XRD medium range order over a wide range of germane depletion indicate that this order is already optimum for the HWCVD i-layers, suggesting that energetic bombardment of a-SiGe:H films may not always be necessary to achieve well ordered films. Preliminary structural comparisons are also made between HWCVD and PECVD device layers.  相似文献   

2.
3.
We envisioned that label-free control of the transport of cells in two dimensions through receptor-ligand interactions would enable simple separation systems that are easy to implement yet retain the specificity of receptor-ligand interactions. Here we demonstrate nanomechanical control of cell transport in two dimensions via transient receptor-ligand adhesive bonds by patterning of receptors that direct cell rolling through an edge effect. HL-60 cells rolling on P-selectin receptor patterns were deflected at angles of 5-10 degrees with respect to their direction of travel. Absence of this effect in the case of rigid microsphere models of cell rolling suggests that this two-dimensional motion depends on nanomechanical properties of the rolling cell. This work suggests the feasibility of simple continuous-flow microfluidic cell separation systems that minimize processing steps and yet retain the specificity of receptor-ligand interactions.  相似文献   

4.
Several spectroscopies analysing the composition and chemical nature of thin films (Rutherford backscattering spectrometry, nuclear reaction analysis, secondary ion mass spectroscopy, X-ray photoelectron spectroscopy) were combined with a specially designed technique of X-ray diffraction at grazing incidence on bulk samples, in order to characterize Ti1–x N x films of nearly homogeneous composition obtained by ion implantation at several energies. Differences in the nature of the phases observed, with respect to previous TEM studies on thin foils, are discussed in terms of radiation-enhanced diffusion and of thermal dissipation of the ion-beam power. The distribution of nitrogen atoms, defects and phases as a function of the nitrogen concentration are also correlated with changes in depth profiles of hardness measured by a submicroscopic indentation test.  相似文献   

5.
6.
Li Z  Meng F  Liu X 《Nanotechnology》2011,22(13):135302
Here we have developed a convenient method to fabricate wettability controllable surfaces that can be applied to various nanostructured surfaces with complex shapes for different industrial needs. Diamond-like carbon (DLC) films were synthesized on titanium substrate with a nanowire structured surface using plasma immersion ion implantation and deposition (PIII&D). The nanostructure of the DLC films was characterized by field emission scanning electron microscopy and found to grow in a rippling layer-by-layer manner. Raman spectroscopy was used to investigate the different bonding presented in the DLC films. To determine the wettability of the samples, water contact angles were measured and found to vary in the range of 50°-141°. The results indicated that it was critical to construct a proper surface topography for high hydrophobicity, while suitable I(D)/I(G) and sp2/sp3 ratios of the DLC films had a minor contribution. Superhydrophobicity could be achieved by further CF? implantation on suitably structured DLC films and was attributed to the existence of fluorine. In order to maintain the nanostructure during CF? implantation, it was favorable to pre-deposit an appropriate carbon content on the nanostructure, as a nanostructure with low carbon content would be deformed during CF? implantation due to local accumulation of surface charge and the following discharge resulting from the low conductivity.  相似文献   

7.
8.
The key elements in all known cuprate superconductors are lightly doped CuOi-planes. Recently a new homologous series of compounds Srn–1Cun+1O2n have been reported in which the planes contain a parallel array of line defects which form a trellis lattice with ladder-segments of the square lattice weakly coupled through triangular line defects. The width of the ladder segments is determined by the parameter n and varies from single chains to arbitrarily wide ladders. The magnetic properties of undoped compounds will be dominated by the properties of the ladders. Heisenberg s = 1/2 ladders can have a spin liquid groundstate with a spin gap if the number of rungs is odd so that a short range RVB groundstate is predicted for such trellis lattices. Using a t-J model to describe the doped material leads to the prediction of a d-wave RVB superconducting groundstate with a large spin gap.  相似文献   

9.
By studying simultaneous densification kinetics and reaction kinetics during the sintering and hot pressing of alumina-zircon mixtures, it has been possible to distinguish between the particle rearrangement and particle reshaping (diffusive) stages of the densification process. Particle rearrangement is found to be more significant during hot pressing (20 MN m–2) and is the dominant mechanism at relative densities up to 72%. In pressureless sintering, diffusive processes become dominant above relative densities of about 62%.  相似文献   

10.
The cellular environment impacts a myriad of cellular functions by providing signals that can modulate cell phenotype and function. Physical cues such as topography, roughness, gradients, and elasticity are of particular importance. Thus, synthetic substrates can be potentially useful tools for exploring the influence of the aforementioned physical properties on cellular function. Many micro- and nanofabrication processes have been employed to control substrate characteristics in both 2D and 3D environments. This review highlights strategies for modulating the physical properties of surfaces, the influence of these changes on cell responses, and the promise and limitations of these surfaces in in-vitro settings. While both hard and soft materials are discussed, emphasis is placed on soft substrates. Moreover, methods for creating synthetic substrates for cell studies, substrate properties, and impact of substrate properties on cell behavior are the main focus of this review.  相似文献   

11.
毛建西 《声学技术》2009,28(5):634-639
在社会生态环境中,居住空间声环境是重要的环境之一。为了解释良好居住声环境的特质,探讨怎样创造和形成良好的居住空间声环境,编制了声环境调查量表。采用因子分析、相关分析等方法对调查结果进行了统计分析研究。研究表明,居住空间声环境是一个客观的、独立的存在,是一种多维度的结构,这一结构包括声源的三个维度和声环境认知与反应的四个维度,设计的声环境调查问卷实现了对各个维度的测量,问卷调查结果显示了一些有趣的现象,初步印证了目前我国城市居住空间声环境的一些特点。  相似文献   

12.
Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 11%. However, very few studies have focused on their stability under illumination and the origin of the degradation during the so-called burn-in period. Here, we studied the burn-in period of a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C71 butyric acid methyl ester (BTR:PC71BM) with increasing solvent vapour annealing time applied to the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV–vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the crystallinity of BTR affects the performance drop during the burn-in period, the degradation is found not to originate from the crystallinity changes of the BTR phase, but correlates with changes in molecular conformation – rotation of the thiophene side chains, as resolved by Raman spectroscopy which could be correlated to slight photobleaching and changes in PL spectra.  相似文献   

13.
Surface biofunctionalisation of many biodegradable polymers is one of the used strategies to improve the biological activity of such materials. In this work, the introduction of collagen type I over the surface of a biodegradable polymer (poly lactic acid) processed in the forms of films and fibers leads to an enhancing of the cellular adhesion of human dermal fibroblast when compared to unmodified polymer and biomolecule-physisorbed polymer surface. The change of topography of the material does not affect the cellular adhesion but results in a higher proliferation of the fibroblast cultured over the fibers. Moreover, the difference of topography governs the cellular morphology, i.e. cells adopt a more stretched conformation where cultured over the films while a more elongated with lower area morphology are obtained for the cells grown over the fibers. This study is relevant for designing and modifying different biodegradable polymers for their use as scaffolds for different applications in the field of Tissue Engineering and Regenerative Medicine.  相似文献   

14.
In the present work we perform optimization of mechanical and crystalline properties of CVD microcrystalline diamond films grown on steel substrates. A chromium-nitride (Cr-N) interlayer had been previously proposed to serve as a buffer for carbon and iron inter-diffusion and as a matching layer for the widely differing expansion coefficients of diamond and steel. However, adhesion and wear as well as crystalline perfection of diamond films are strongly affected by conditions of both Cr-N interlayer preparation and CVD diamond deposition. In this work we assess the effects of two parameters. The first one is the temperature of the Cr-N interlayer preparation: temperatures in the range of 500 degrees C-800 degrees C were used. The second one is diamond film thickness in the 0.5 microm-2 microm range monitored through variation of the deposition time from approximately 30 min to 2 hours. The mechanical properties of so deposited diamond films were investigated. For this purpose, scratch tests were performed at different indentation loads. The friction coefficient and wear loss were assessed. The mechanical and tribological properties were related to structure, composition, and crystalline perfection of diamond films which were extensively analyzed using different microscopic and spectroscopic techniques. It was found that relatively thick diamond film deposited on the Cr-N interlayer prepared at the temperature similar to that of the CVD process has the best mechanical and adhesion strength. This film was stable without visible cracks around the wear track during all scratch tests with different indentation loads. In other cases, cracking and delamination of the films took place at low to moderate indentation loads.  相似文献   

15.
Xie  Juan  Gong  Kaile  Cheng  Ying  Ke  Qing 《Scientometrics》2019,118(3):763-786
Scientometrics - Citation count is a widely used bibliometric indicator. It is influenced by many factors, some of which have been well investigated. This study investigated a more controversial...  相似文献   

16.
碳纤维复合材料界面结构的形貌与尺寸的表征   总被引:4,自引:1,他引:3       下载免费PDF全文
为了准确测定碳纤维增强树脂基复合材料界面结构的形貌和尺寸, 本文中介绍了一种原位纳米力学动态模量成像技术, 并采用该方法对碳纤维增强热固性树脂基复合材料进行了测试, 对该技术在界面结构测试上的参数设置、 数据处理方法以及适用性等方面进行了分析。研究表明, 该方法的横向分辨率可以达到纳米尺度, 适于测量界面尺寸在纳米级别的碳纤维复合材料界面形貌与尺寸。对于碳纤维/环氧树脂和碳纤维/双马树脂体系, 界面区的储能模量呈梯度变化, 根据储能模量成像图的统计分析可得到界面的形貌和厚度。所得界面平均厚度在100nm左右, 横截面上界面形貌呈不均匀的“河流状”, 并与碳纤维表面形貌相似。   相似文献   

17.
Mean dynamic topography: inter-comparisons and errors   总被引:1,自引:0,他引:1  
Knowledge of the ocean dynamic topography, defined as the height of the sea surface above its rest-state (the geoid), would allow oceanographers to study the absolute circulation of the ocean and determine the associated geostrophic surface currents that help to regulate the Earth's climate. Here a novel approach to computing a mean dynamic topography (MDT), together with an error field, is presented for the northern North Atlantic. The method uses an ensemble of MDTs, each of which has been produced by the assimilation of hydrographic data into a numerical ocean model, to form a composite MDT, and uses the spread within the ensemble as a measure of the error on this MDT. The r.m.s. error for the composite MDT is 3.2 cm, and for the associated geostrophic currents the r.m.s. error is 2.5 cms(-1). Taylor diagrams are used to compare the composite MDT with several MDTs produced by a variety of alternative methods. Of these, the composite MDT is found to agree remarkably well with an MDT based on the GRACE geoid GGM01C. It is shown how the composite MDT and its error field are useful validation products against which other MDTs and their error fields can be compared.  相似文献   

18.
19.
The osteocyte network, through the numerous dendritic processes of osteocytes, is responsible for sensing mechanical loading and orchestrates adaptive bone remodelling by communicating with both the osteoclasts and the osteoblasts. The osteocyte network in the vicinity of implant surfaces provides insight into the bone healing process around metallic implants. Here, we investigate whether osteocytes are able to make an intimate contact with topologically modified, but micrometre smooth (S a?<?0.5?µm) implant surfaces, and if sub-micron topography alters the composition of the interfacial tissue. Screw shaped, commercially pure (cp-Ti) titanium implants with (i) machined (S a?=?~0.2?µm), and (ii) two-step acid-etched (HF/HNO3 and H2SO4/HCl; S a?=?~0.5?µm) surfaces were inserted in Sprague Dawley rat tibia and followed for 28?days. Both surfaces showed similar bone area, while the bone-implant contact was 73?% higher for the acid-etched surface. By resin cast etching, osteocytes were observed to maintain a direct intimate contact with the acid-etched surface. Although well mineralised, the interfacial tissue showed lower Ca/P and apatite-to-collagen ratios at the acid-etched surface, while mineral crystallinity and the carbonate-to-phosphate ratios were comparable for both implant surfaces. The interfacial tissue composition may therefore vary with changes in implant surface topography, independently of the amount of bone formed. Implant surfaces that influence bone to have higher amounts of organic matrix without affecting the crystallinity or the carbonate content of the mineral phase presumably result in a more resilient interfacial tissue, better able to resist crack development during functional loading than densely mineralised bone.  相似文献   

20.
The relationship between fracture topography and the plane strain fracture toughness of Comsteel En25 tempered at nine different temperatures and with crack planes in the R-L, R-C and L-R orientations has been studied. The results show that fracture toughness is qualitatively relatable to the fracture morphology. Due to the shape and alignment of the elongated MnS inclusions, fracture toughness in the L-R orientation was found to be 1.8 times those in the other two orientations. Terrace-type fracture prevailed in the R-L orientation, but this frequently was observed to change to zigzag type fracture in the R-C orientation. However, both these fracture mechanisms were absent in the L-R orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号