首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To reduce the highly hydrophilic property of chondroitin sulfate (ChS), a semi‐interpenetrating polymer network (semi‐IPN) of chondroitin sulfate/polyacrylic acid (PAA) was prepared as a drug carrier by crosslinking acrylic acid with diethyleneglycol diacrylate. The swelling properties of the semi‐IPNs with different concentrations of crosslinking agent were correlated. The moisture sorption profiles were evaluated using differential thermal analysis. Ketoprofen was used as a drug probe to evaluate the performance of the drug released from the semi‐IPN matrices. The prepared semi‐IPNs demonstrated significant swelling reduction properties with both gastric and intestinal fluids compared with those of both the pure ChS and the ChSAA blend without the crosslinking agent. The amount of accumulated drug released from the semi‐IPNs was less than 30 wt % at pH 1.2 and up to 80 wt % at pH 7.4. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 114–122, 2002  相似文献   

2.
Hydrogels based on n‐alkyl methacrylate esters (n‐AMA), acrylic acid, and acrylamide crosslinked with 4,4′‐di(methacryloylamino)azobenzene were prepared. Swelling behavior of the hydrogels was studied by the immersion of slabs in buffered solutions at pH 2.2–7.4. The diffusion of water into the slabs was discussed on the stress relaxation model of polymer chains. The results obtained are in good agreement with Schott's second‐order diffusion kinetics. The constants A and B of Schott's kinetics equation depend on the balance of hydrophobicity/hydrophilicity, the rigidity/flexibility, and the degree of crosslinking. The factors that exert the greatest influence on the swelling behavior of the gels include the degree of crosslinking, the lengths of the n‐AMA side chains, and pH values. By adjusting these factors, the degree of swelling of the hydrogels in the small intestine can be controlled, and consequently the drugs may avoid being released before arriving in the colon. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2835–2842, 2002; DOI 10.1002/app.10259  相似文献   

3.
In this study, carboxymethyl chitosan (CMC) hydrogel beads were prepared by crosslinking with Ca2+. The pH‐sensitive characteristics of the beads were investigated by simulating gastrointestinal pH conditions. As a potential protein drug delivery system, the beads were loaded with a model protein (bovine serum albumin, BSA). To improve the entrapment efficiency of BSA, the beads were further coated with a chitosan/CMC polyelectrolyte complex (PEC) membrane by extruding a CMC/BSA solution into a CaCl2/chitosan gelation medium. Finally, the release studies of BSA‐loaded beads were conducted. We found that, the maximum swelling ratios of the beads at pH 7.4 (17–21) were much higher than those at pH 1.2 (2–2.5). Higher entrapment efficiency (73.2%) was achieved in the chitosan‐coated calcium‐CMC beads, compared with that (44.4%) in the bare calcium‐CMC beads. The PEC membrane limited the BSA release, while the final disintegration of beads at pH 7.4 still leaded to a full BSA release. Therefore, the chitosan‐coated calcium‐CMC hydrogel beads with higher entrapment efficiency and proper protein release properties were a promising protein drug carrier for the site‐specific release in the intestine. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3164–3168, 2007  相似文献   

4.
Based on gelatin (Gltn) and acrylic acid (AAc), biodegradable pH‐sensitive hydrogel was prepared using gamma radiation as super clean source for polymerization and crosslinking. Incorporation of PAAc in the prepared hydrogel was confirmed by Fourier transform infrared spectroscopy (FTIR). The effect of PAAc content on the morphological structure of the prepared hydrogel swollen at pH 1, 5, and 7 was examined using scanning electron microscopy (SEM). The results showed the dependence of the porous structure of the prepared hydrogels on AAc content and the pH of the swelling medium. Swelling properties of gelatin/acrylic acid copolymer hydrogels with different AAc contents were investigated at different pH values. Swelling data showed that the prepared hydrogels possessed pronounced pH sensitivity. In vitro release studies were performed to evaluate the hydrogel potential as drug carrier using ketoprofen as a model drug. Experimental data showed that the release profile depends on both hydrogel composition and pH of the releasing medium. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Orally administrable hydrogel was prepared by crosslinking chitosan (CS) with γ‐poly(glutamic acid) (γ‐PGA) for an excellent pH‐responsive colon‐targeted drug delivery system. The stable crosslinked amide bond appeared in the shifted region of FTIR spectroscopy, and the tensile strength and elastic modulus were also reduced by crosslinking of CS and γ‐PGA. The surfaces of crosslinked hydrogel have a homogeneous pore array with pore size corresponding to the varied blending ratio. The swelling ratio was dramatically changed by increasing the pH from 3 to 6, and the responsiveness of swelling ratio to the reversible pH changes between 3 and 10 was reliable for 72 h. The drug diffusion rate was mainly dependent on the pH, and a water‐soluble tetrazolium (WST‐1) assay indicated that cytocompatibility of the hydrogel was in an acceptable range. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci. 2013  相似文献   

6.
An N‐dodecylated chitosan (CS‐12) was synthesized from dodecyl bromide and chitosan and was assembled with DNA to form a polyelectrolyte complex (DNA/CS‐12 PEC). UV was used to examine the thermal stability of DNA embedded in PEC. The results indicate that the incorporation of dodecylated chitosan can enhance the thermal stability of DNA. The analysis of AFM image shows that PEC develops a globule‐like structure composed of 40–115 DNA molecules. Dissociation of PEC was investigated by the addition of low molecular weight electrolytes. The added small molecular salts dissociate the PEC, inducing DNA to release. The ability of Mg2+ to dissociate PEC is greater compared to that of Na+ and K+. From AFM images, it can be visualized that DNA remains intact and undamaged due to the protection from DNase offered by alkylated chitosan. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3391–3395, 2001  相似文献   

7.
To obtain biodegradable materials for biomedical applications, new biopolymeric hydrogels based on blends of polyacrylamide nanoparticles and chitosan have been prepared. In this work, we have studied the behavior of the diffusion of ascorbic acid (V‐C) from poly(acrylamide‐co‐acrylic acid)/chitosan nanostructured hydrogels. The process involves the synthesis of nanoparticles of polyacrylamide by inverse microemulsion polymerization and their complexation with chitosan dissolved in an acrylic acid aqueous solution. We have studied the effect of the concentration of the polyacrylamide nanoparticles, which are crosslinked with N,N′‐methylenebisacrylamide, in the delivery of V‐C. The results indicate that the drug delivery operates by a non‐Fickian mechanism. Also, we have obtained the diffusion coefficient for V‐C in gels for different nanoparticle concentrations, using a modified form of Fick's second law that takes into account dimensional changes in the hydrogels during drug release. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Chitosan microspheres have been prepared using a spray‐drying method, and crosslinked with pyromellitic dianhydride. The chemical structure of the modified chitosan was characterized by FTIR spectroscopy and solid state 13C NMR analysis. The particle size and morphology of the crosslinked chitosan were investigated. These microspheres were evaluated for colon‐specific delivery of bovine serum albumin (BSA) as a model protein drug. The results indicate that the drug was released as follows: 37.1 ± 2.8% after 2 h in SGF, 73.1 ± 4.8% after 8 h (2 h in SGF+ 6 h in SIF), and 80.9 ± 4.1% after 12 h in SCF. The effect of β‐glucosidase on the drug release was also examined. The encapsulation efficiency was decreased from 88.4 ± 3.1% to 62.8 ± 2.9%, with increasing BSA concentration. Loading capacity was significantly increased from 6.3 ± 0.3% to 41.8 ± 4.1% by increasing the initial BSA concentration. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40514.  相似文献   

9.
Cyclodextrins (CD) form inclusion complexes with many drug molecules. The complexed drugs have increased bioabsorption in in vivo system. We have attempted to complex insulin with β‐Cyclodextrin (BCD) and encapsulate in the chitosan/calcium alginate matrix. For drug release studies insulin complexed with BCD for 20 min and that complexed with BCD for 150 min have been used for encapsulation in the chitosan/calcium alginate matrix. The two matrices seem to have different drug release profiles in simulated intestinal medium (pH 7.4) It appears that drug release from the 20‐min BCD complexed system encapsulated in the chitosan/calcium alginate matrix begins only after an hour, where, being released from the 150‐min BCD complexed system it begins in the first hour itself. Also, aggregation of the insulin molecules seems to be reduced by the complexation of the drug with BCD. Another noticeable fact is the change in the loading character, which is found to be inversely related to the concentration of BCD when it is above the stoichiometric equivalent of the drug. In an attempt to increase the payload of the drug in the matrix, the pH of the processing medium consisting of calcium chloride and chitosan is varied. It is found that the encapsulation efficiency increases as the pH is decreased from 6.0 to 4.0. Another way of increasing the loading is studied by decreasing the concentration gradient of insulin in the processing alginate solution and the crosslinking medium consisting of chitosan/calcium chloride. Preliminary animal studies on rabbits seem to be promising. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1089–1096, 2000  相似文献   

10.
赵海田  李旭东  曹凤芹  倪艳  姚磊 《化工进展》2019,38(11):5057-5065
壳聚糖纳米粒子载药体系因其天然无毒、生物相容性高、可生物降解等特点,在生物医学、化工和食品等领域有广阔的应用前景。本文对制备壳聚糖纳米粒子的离子交联法、聚电解质复合法、乳化交联法、喷雾干燥法和溶剂蒸发法等主要方法进行了综述,并阐述了其制备原理和优缺点。此外,本文结合国内外学者近期的研究工作,综述了壳聚糖纳米粒子载药体系在抗肿瘤药物和抑菌药物方面的应用研究进展,并对壳聚糖装载降糖药物、降脂药物、治疗骨质疏松药物和抗癫痫药物应用进行了简介。最后结合壳聚糖纳米载药体系在制备方法及应用中存在的实际问题,提出多学科研究相结合,开发壳聚糖纳米载药体系的智能控释、靶向递送功能和突破人体特殊生物屏障功能将是其近期的重点研究方向。  相似文献   

11.
A novel polysaccharide‐based polyelectrolyte complex was formed via ionic self‐assembly (ISA) of a carboxylic derivative of starch, maleic starch half‐ester acid (MSA), with chitosan (CS) and precipitated from aqueous solution. Both Fourier transform infrared (FTIR) spectroscopy and elementary analysis results showed that there was CS in the complex. Thermogravimetric analysis (TGA) showed that the thermal resistance of the complex was higher than that of two components and the corresponding blend. X‐ray diffraction (XRD) analysis result revealed that the complex was amorphous, whereas its components were semi‐crystalline. In addition, the drug release behavior of the complex that contains 5‐fluorouracil behaved pH‐responsive. All the experimental results verified the complex was composed of MSA and CS, and also indicated that the driving force for the self‐assembly of the complex was predominantly the electrostatic interactions between two oppositely charged polyelectrolytes, cationic CS, and the anionic MSA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The thermosensitive material that could be transformed into gel at 37°C was prepared from chitosan (dissolved in acetic acid/sodium acetate buffer solution) and a mixture of α‐ and β‐glycerophosphate (αβ‐GP). The thermosensitive characteristics, appearance, and structure of the hydrogel were all affected by the pH, ionic strength, and CS/αβ‐GP ratio. The optimal conditions for the preparation of a transparent CS‐αβ‐GP thermosensitive hydrogel were pH 4.6, ionic strength 0.15 mol/L, and a CS/αβ‐GP ratio of 8.8/1.2 (v/v). The hydrogel was stable for at least 3 months at 4°C. We believe that hydrogen bonding interactions between the N? H (and C?O) groups of chitosan and the O? H groups of αβ‐GP play an important role during the process of sol‐to‐gel transition. The cumulative release of adriamycin from the CS‐αβ‐GP hydrogel, measured in PBS at pH 7.4, reached only 60 to 70% over 24 h, indicating that this material could be potentially used in a sustained drug delivery system. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
BACKGROUND: Chitosan is a polymer with good biocompatibility which makes it promising for potential applications in the field of drug delivery. A novel kind of copolymer, P(CS‐Ma‐graft‐NIPAm), was synthesized with chitosan (CS), maleic anhydride (Ma) and N‐isopropylacrylamide (NIPAm) by grafting and copolymerization. RESULTS: The copolymers were characterized using Fourier transform infrared, 1H NMR and ultraviolet spectroscopies, and the molecular weight and polydispersity were determined using gel permeation chromatography. The aqueous solution properties of the copolymer and the controlled delivery of coenzyme A from it were also studied. The results showed that the copolymer had temperature and pH sensitivities, and that the release of coenzyme A from the copolymer was dependent on the release medium, namely the concentration of the copolymer, pH and temperature. Higher concentrations of the copolymer absorbed more coenzyme A than lower ones. Increasing temperature accelerated coenzyme A release from the copolymer. Also, the pH of the solution had a significant impact on the release of coenzyme A. CONCLUSION: These results suggest that the novel copolymer could be used in drug delivery systems. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
Graft copolymerization of chitosan with acrylonitrile (AN) was carried out by free radical polymerization using KMnO4 and oxalic acid as a combined redox initiator system. Graft copolymerization was confirmed by Fourier transform infrared spectra (FTIR), proton nuclear magnetic resonance spectra (1H‐NMR), thermal gravimetric analysis (TGA) measurements, and wide angle X‐ray diffraction (WAXD). In addition, further modification of the cyano groups of the grafted copolymers was performed by partial hydrolysis into carboxylic function groups with various extents. The extent of hydrolysis was monitored using FTIR spectroscopy. The potential of the hydrolyzed and unhydrolyzed grafted copolymers as polymeric carriers for drug delivery systems was extensively studied by preparation of tablets incorporated with methyl orange (MO) as a drug model. In vitro drug release was carried out in simulated gastric and intestinal conditions. The effects of grafting percentage (GP) and the extent of hydrolysis on the release kinetics were evaluated. Release continued up to 24 h for both hydrolyzed and unhydrolysed chitosan‐g‐PAN copolymers. The nature of drug transport through the polymer matrices was studied by comparing with power law or Kormeyer‐Peppas equation. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
The pH‐sensitive swelling and release behaviors of the anionic P(MAA‐co‐EGMA) hydrogels were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. There was a drastic change of the equilibrium weight swelling ratio of P(MAA‐co‐EGMA) hydrogels at a pH of around 5, which is the pKa of poly (methacrylic acid) (PMAA). At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. When the molecular weight of the pendent poly(ethylene glycol) (PEG) of the P(MAA‐co‐EGMA) increased, the swelling ratio decreased at a pH higher than 5. The pKa values of the P(MAA‐co‐EGMA) hydrogels moved to a higher pH range as the pendent PEG molecular weight increased. When the feed concentration of the crosslinker of the hydrogel increased the swelling ratio of the P(MAA‐co‐EGMA) hydrogels decreased at a pH higher than 5. In release experiments using Rhodamine B (Rh‐B) as a model solute, the P(MAA‐co‐EGMA) hydrogels showed a pH‐sensitive release behavior. At low pH (pH 4.0) a small amount of Rh‐B was released while at high pH (pH 6.0) a relatively large amount of Rh‐B was released from the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
This study describes the preparation of mucoadhesive alginate–chitosan beads containing theophylline intended for colon‐specific delivery. The calcium alginate beads were coated with chitosan by the ionotropic hydrogelation method with a polyelectrolyte complex reaction between two oppositely charged polyions. The release profiles of theophylline from the beads were determined by ultraviolet–visible absorption measurement at 272 nm. Scanning electron microscopy was used for morphology observation. The in vitro mucoadhesive tests for particles were carried out with the freshly excised jejunum of Sprague‐Dawley rats. The bead particles, which ranged in size from 200 to 400 μm, exhibited excellent mucoadhesive properties. The results showed that the formulated coated beads succeeded in controlling the release of theophylline over a 24‐h period. In conclusion, the release of theophylline was found to be dependent on the composition of the beads, the component polymer and its possible interactions, and the bioadhesiveness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A novel type of reduction‐sensitive graft copolymers, chitosan‐S‐S‐poly(ε‐caprolactone) (CS‐S‐S‐PCL, here ‐S‐S‐ means PCL was conjugated onto chitosan backbone through disulfide linkage), was synthesized through a convenient route using dithiodipropionic anhydride (DTDPA) as a disulfide donor. Reaction of hydroxy‐terminated poly(ε‐caprolactone) (PCL) with DTDPA quantitatively yielded DTDPA functionalized PCL (PCL‐S‐S‐COOH). The disulfide‐containing polyester was regioselectively conjugated onto the hydroxy groups of chitosan under mild and homogeneous conditions, utilizing dodecyl sulfate‐chitosan complexes (SCC) as an intermediate. The self‐assembly and Doxorubicin (Dox) release behavior of the copolymers were investigated. Spherical micelles could be formed through self‐assembly of CS‐S‐S‐PCL in aqueous media. The reduction‐sensitive behavior of CS‐S‐S‐PCL micelles was investigated by using Dithiothreitol (DTT) as a reductive reagent. In the presence of 10 mM DTT, the micelles gradually lost their aggregation stability and were precipitated out after four days. In addition, the Dox release was accelerated when the micelles were treated with DTT. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Carboxymethyl sago pulp (CMSP)/pectin hydrogel beads were synthesized by calcium crosslinking and further crosslinked by electron beam irradiation to form drug carrier for colon‐targeted drug. Sphere‐shaped CMSP/pectin 15%/5% hydrogel beads is able to stay intact for 24 h in swelling medium at pH 7.4. It shows pH‐sensitive behavior as the swelling degree increases as pH increases. Fourier transform infrared spectroscopy analysis confirmed the absence of chemical interaction between hydrogel beads and diclofenac sodium. Differential scanning calorimetric and X‐ray diffraction studies indicate the amorphous nature of entrapped diclofenac sodium. The drug encapsulation efficiency is up to about 50%. Less than 9% of drug has been released at pH 1.2 and the hydrogel beads sustain the drug release at pH 7.4 over 30 h. This shows the potential of CMSP/pectin hydrogel beads as carrier for colon‐targeted drug. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43416.  相似文献   

19.
In this study hydrogels were synthesized by the copolymerization of acrylamide and itaconic acid in the presence of poly(N‐vinyl‐2‐pyrrolidone) in an aqueous medium. The incorporation of a small amount of itaconic acid resulted in the transition of the swelling behavior from Fickian to non‐Fickian. The hydrogels showed good response to the valency of the counterions and pH of the swelling media. The equilibrium water uptake increased with the pH of the external solution, thus attaining a maximum value at pH 7–8. The gels exhibited a number of deswelling–swelling cycles while maintaining mechanical strength and shape stability. The amount of itaconic acid present in the system affected the swelling behavior of the hydrogels in a rather unusual way. At pH 2.0 the equilibrium water uptake increased with the amount of acid monomer up to 15 mM, remained almost constant for a very small range of concentrations (i.e., up to 22 mM), and then finally decreased with the further increase of the acid content. However, a continuous increase was observed at the pH 7.0 of the swelling media. The hydrogels showed very poor temperature dependency and the activation energies for the samples with and without itaconic acid were 29.09 and 19.92 kJ mol?1, respectively. Finally, the swelling and deswelling processes were explained on the basis of two different mechanisms that were followed by the gels. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1717–1729, 2002  相似文献   

20.
In this article, we introduce a new method for preparing ultrasmall chitosan (CS)/succinyl β‐cyclodextrin (SCD) nanoparticles (NPs) intended for loading bovine serum albumin (BSA) as a model protein. The proposed method is based on the complex coacervation technique followed by ionotropic gelation with tripolyphosphate. SCD, an anionic derivative of cyclodextrin, was synthesized and used in CS‐based NPs to enhance the entrapment efficiency of BSA. The results show that with this approach, ultrasmall, compact, and neutralized NPs with a mean particle size near 30 nm were obtained. A high degree of protein entrapment in the NPs led to a significant improvement in the BSA release profile with a low initial burst release (ca. 3% w/v of the initially loaded BSA) and a sustained release over time. This enabled a suitable nanocarrier for long‐term protein delivery (30% release over 120 h). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39648.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号