首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Orthogonal Frequency Division Multiplexing (OFDM) systems have become the most promising wireless communication systems in the recent years. For OFDM systems, there is one major drawback, which is the high peak‐to‐average power ratio (PAPR). Companding techniques have been frequently proposed to reduce PAPR. Exponential companding technique offers efficient PAPR reduction with a low bit error rate (BER). However, the exponential companding technique is difficult to implement. This paper utilizes the Padé approximation to simplify the exponential companding technique. The simulation results demonstrate that the proposed companding technique offers the same performance results as those of the exponential companding technique, while Additive White Gaussian Noise (AWGN) or multipath fading channel is considered. Further, the hardware implementation results show that the complexity of the proposed companding technique is less than that of the exponential companding technique. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A major drawback of orthogonal frequency-division multiplexing (OFDM) signals is their high peak-to-average power ratio (PAPR), which causes serious degradation in performance when a nonlinear power amplifier (PA) is used. Companding transform (CT) is a well-known method to reduce PAPR without restrictions on system parameters such as number of subcarriers, frame format and constellation type. Recently, a linear nonsymmetrical companding transform (LNST) that has better performance than logarithmic-based transforms such as $mu$-law companding was proposed. In this paper, a new linear companding transform (LCT) with more design flexibility than LNST is proposed. Computer simulations show that the proposed transform has a better PAPR reduction and bit error rate (BER) performance than LNST with better power spectral density (PSD).   相似文献   

3.
采用基于互补序列分组编码的OFDM系统性能分析与仿真   总被引:3,自引:0,他引:3  
为了减小正交频分复用(OFDM)信号的峰值-平均值功率之比(PAPR),本文利用互补序列和Reed-Muller码的关系,详细提出了一种构造互补序列的分组编码方法的具体实现方案。分析了其在AWGN和选频衰落信道中的性能,并做了相应的仿真。仿真结果表明,编码后每个OFDM信号的最大PAPR不超过3dB;采用该编码方法的OFDM在AWGN中当信噪比不到11dB时就可以实现BER为10^-6,在衰落信道中如果采用软判决译码,则当信噪比达到20dB左右时可以实现BER为10^-3。  相似文献   

4.
Clipping is a simple scheme to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. Further, it can be extended to space-time block coding (STBC) multiple-input multiple-output (MIMO) OFDM systems for the PAPR reduction. In the conventional clipping schemes for STBC MIMO-OFDM systems, the input symbols are first encoded and then clipped. In this paper, a new scheme is proposed, where the clipping operation is performed before space-time block coding. We theoretically prove that the proposed scheme has better bit-error rate (BER) performance while maintaining the same PAPR reduction as the conventional schemes. Additionally, we derive the symbol-error rate (SER) and BER expressions for the new scheme over multipath fading channels. The simulation results show a good match with our analysis.  相似文献   

5.

To reduce the high peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal, a novel nonlinear companding transform (CT) scheme is proposed in this paper. This scheme can reallocate both the amplitude/power as well as statistical distribution of the companded signal more reasonably and flexibly than existing CT methods with low computational complexity. By choosing an appropriate companding parameter, it can provide more effective PAPR reduction but at the price of a minimal amount of bit-error-rate (BER) performance degradation caused by the companding distortion. The closed-form expressions including the achievable PAPR gain, signal attenuation factor, and corresponding selection criteria for the companding parameter were derived. Computer simulations demonstrate that the scheme significantly improves the overall performances of OFDM system in terms of PAPR, BER and bandwidth efficiency under the multipath fading channel or with the high power amplifier.

  相似文献   

6.
The orthogonal frequency‐division multiplexing (OFDM) is a multicarrier modulation system that is used to transmit the large volume of data to the receiver. Reducing the peak‐to‐average power ratio (PAPR) in OFDM system is one of the demanding and crucial task in recent days. For this reason, various precoding and companding mechanisms are developed in the traditional works, but it remains with the limitations of increased complexity, reduced performance, and nonlinear distortion. The reduction of PAPR is achieved by minimizing the companding distortion with the enhancement of the bit error rate (BER) performance significantly. Then, in order to avoid clipping in OFDM, a multilateral piecewise exponential companding transform (MPECT) method has been utilized rather than using piecewise exponential companding transform (PEC) where PAPR is getting reduced. The OFDM is very sensitive to synchronizing error. To overcome this sensitivity, employ the Zadoff‐Chu sequence to carrier frequency offsets. Zadoff‐Chu matrix transform (ZCMT) has numerous merits among the other ODFM systems such as the improvement in the performance of the channels that are fading away and provides an ideal periodic autocorrelation and a constant magnitude periodic cross correlation. Both of these techniques provide improvement in the ODFM systems. To get more efficiency, this paper aims to develop a hybrid technique by integrating the ZCMT and MPECT techniques for reducing the PAPR in OFDM systems. Further, convolutional encoding is applied for better BER and PAPR. The simulation results of the proposed ZCMT‐MPECT technique are evaluated and compared with the conventional OFDM and other precoding methods.  相似文献   

7.
We apply clipping to superposition coded modulation (SCM) systems to reduce the peak-to-average power ratio (PAPR) of the transmitted signal. The impact on performance is investigated by evaluating the mutual information driven by the induced peak-power-limited input signals. It is shown that the rate loss is marginal for moderate clipping thresholds if optimal encoding/decoding is used. This fact is confirmed in examples where capacity-approaching component codes are used together with the maximum a posteriori probability (MAP) detection. In order to reduce the detection complexity of SCM with a large number of layers, we develop a suboptimal soft compensation (SC) method that is combined with soft-input soft-output (SISO) decoding algorithms in an iterative manner. A variety of simulation results for additive white Gaussian noise (AWGN) and fading channels are presented. It is shown that with the proposed method, the effect of clipping can be efficiently compensated and a good tradeoff between PAPR and bit-error rate (BER) can be achieved. Comparisons with other coded modulation schemes demonstrate that SCM offers significant advantages for high-rate transmissions over fading channels.   相似文献   

8.
正交频分复用(OFDM)具有很高的频谱利用率和良好的抗多径衰落能力,是卫星通信备受关注的新技术之一。但OFDM信号峰值平均功率比(PAPR)较高的问题限制了其在卫星通信系统中的应用。针对卫星通信高数据率和高可靠性传输的要求,提出一种新的抑制QAM-OFDM信号PAPR的部分格状(PT)成形技术,分析了QAM-OFDM卫星通信系统在AWGN、频率选择性Rician衰落信道的误比特率性能。仿真实验表明,该技术不仅能有效降低QAM-OFDM信号PAPR,结合纠错编码还可大大改善OFDM卫星通信系统误比特率性能。  相似文献   

9.
Orthogonal frequency division multiplexing (OFDM) has been adopted for several wireless network standards due to its robustness against multipath fading. Main drawback of OFDM is its high peak‐to‐average power ratio (PAPR) that causes a signal degradation in a peak‐limiting (e.g., clipping) channel leading to a higher bit error rate (BER). At the receiver end, the effect of peak limitation can be removed to some extent to improve the system performance. In this paper, a joint iterative channel estimation/equalization and clipping noise reduction technique based on minimum mean square error (MMSE) criterion is presented. The equalization weight that minimizes the mean square error (MSE) between the signal after channel equalization and feedback signal after clipping noise reduction is derived assuming imperfect channel state information (CSI). The MSE performance of the proposed technique is theoretically evaluated. It is shown that the BER performance of OFDM with proposed technique can be significantly improved in a peak‐limited and doubly‐selective (i.e., time‐ and frequency‐selective) fading channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A parallel combinatory-orthogonal frequency division multiplexing (PC-OFDM) system is proposed and analyzed. The proposed system selects at each symbol interval a subset of the available subcarriers, and the selected subcarriers are modulated by points from an M-PSK signal constellation, PC-OFDM systems can be designed to have lower peak-to-average power ratio (PAPR), higher bandwidth efficiency, and lower bit error probability on Gaussian channels compared to ordinary OFDM systems. A bit mapping procedure using the Johnson (1993) association, together with a position algorithm for the PSK symbols, is proposed. Good analytical approximations of the BER for PC-OFDM systems are derived for AWGN and Ricean fading channels, and extensive simulation results are presented  相似文献   

11.
多输入多输出正交频分复用(MIMO-OFDM)可以提高系统在频率选择性衰落信道的传输性能.与OFDM系统一样,MIMO-OFDM系统也存在高峰值平均功率比(PAPR)的问题.为此,提出了一种降低空时分组编码MIMO-OFDM系统PAPR的正交部分传输序列算法,运用这种算法,利用傅里叶变换的性质,通过调整空时编码与基带正交调制的顺序,对两天线发射端,可以降低算法近一半的复杂度,且可以减少一半的边信息.利用高功率放大器的非线性模型,得到了瑞利衰落信道下PAPR降低后系统的误码率性能.仿真结果证明了该方法的有效性.  相似文献   

12.
This paper considers direct‐sequence code‐division multiple‐access with zero‐correlation zone sequences (ZCZ‐CDMA) and orthogonal frequency‐division multiple‐access (OFDMA) schemes using M‐ary QAM signaling for broadband wireless communications. Their system structures, complexities and performances in both AWGN and multipath frequency‐selective fading channels are evaluated and compared. For ZCZ‐CDMA, joint suppression of the multipath fading interference and multiple‐access interference can be achieved with a reduced family‐size of the spreading sequences. For OFDMA, analytical and simulation results indicate that it has the same performance as ZCZ‐CDMA in fast time‐varying multipath fading channels. In time‐invariant or slowly time‐varying channels, where the channel information can be made available to transmitters, OFDMA outperforms ZCZ‐CDMA, offers a higher capacity and is more flexible for system reconfiguration with a comparable computational complexity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Single-carrier frequency division multiple access (SC-FDMA) is currently being used in long-term evolution uplink communications owing to its low peak-to-average power ratio (PAPR). This study proposes a new transceiver design for an SC-FDMA system based on Walsh-Hadamard transform (WHT). The proposed WHT-based SC-FDMA system has low-PAPR and better bit-error rate (BER) performance compared with the conventional SC-FDMA system. The WHT-based SC-FDMA transmitter has the same complexity as that of discrete Fourier transform (DFT)-based transmitter, while the receiver's complexity is higher than that of the DFT-based receiver. The exponential companding technique is used to reduce its PAPR without degrading its BER. Moreover, the performances of different ordered WHT systems have been studied in additive white Gaussian noise and multipath fading environments. The proposed system has been verified experimentally by considering a real-time channel with the help of wireless open-access research platform hardware. The supremacy of the proposed transceiver is demonstrated based on simulated and experimental results.  相似文献   

14.
High peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems seriously impacts power efficiency in radio frequency section due to the nonlinearity of high-power amplifiers. In this article, an improved gamma correction companding (IGCC) is proposed for PAPR reduction and investigated under multipath fading channels. It is shown that the proposed IGCC provides a significant PAPR reduction while improving power spectral levels and error performances when compared with the previous gamma correction companding. IGCC outperforms existing companding methods when a nonlinear solid-state power amplifier (SSPA) is considered. Additionally, with the introduction of \(\alpha , \beta , \gamma \), and \(\varDelta \) parameters, the improved companding can offer more flexibility in the PAPR reduction and therefore achieves a better trade-off among the PAPR gain, bit error rate (BER), and power spectral density (PSD) performance. Moreover, IGCC improves the BER and PSD performances by minimizing the nonlinear companding distortion. Further, IGCC improves signal-to-noise ratio (SNR) degradation (\(\varDelta _{\mathrm{SNR}}\)) and total degradation performances by 12.2 and 12.8 dB, respectively, considering an SSPA with input power back-off of 3.0 dB. Computer simulation reveals that the performances of IGCC are independent of the modulation schemes and works with arbitrary number of subcarriers (N), while it does not increase computational complexity when compared with the existing companding schemes used for PAPR reduction in OFDM systems.  相似文献   

15.
Constant Envelope OFDM   总被引:1,自引:0,他引:1  
This paper describes a transformation technique aimed at solving the peak-to-average power ratio (PAPR) problem associated with OFDM (orthogonal frequency-division multiplexing). Constant envelope OFDM (CE-OFDM) transforms the OFDM signal, by way of phase modulation, to a signal designed for efficient power amplification. At the receiver, the inverse transformation?phase demodulation?is applied prior to the conventional OFDM demodulator. The performance of CE-OFDM is analyzed in additive white Gaussian noise (AWGN) and fading channels. CE-OFDM is shown to achieve good performance in dense multipath with the use of cyclic prefix transmission in conjunction with a frequencydomain equalizer (FDE). By way of computer simulation and hardware realization, CE-OFDM is shown to compare favorably to conventional OFDM.  相似文献   

16.
Exponential companding technique for PAPR reduction in OFDM systems   总被引:7,自引:0,他引:7  
In this paper, a new nonlinear companding technique, called "exponential companding", is proposed to reduce the high Peak-to-Average Power Ratio (PAPR) of Orthogonal Frequency Division Multiplexing (OFDM) signals. Unlike the /spl mu/-law companding scheme, which enlarges only small signals so that increases the average power, the schemes based on exponential companding technique adjust both large and small signals and can keep the average power at the same level. By transforming the original OFDM signals into uniformly distributed signals (with a specific degree), the exponential companding schemes can effectively reduce PAPR for different modulation formats and sub-carrier sizes. Moreover, many PAPR reduction schemes, such as /spl mu/-law companding scheme, cause spectrum side-lobes generation, but the exponential companding schemes cause less spectrum side-lobes. Computer simulations, which consider a baseband OFDM system with Additive White Gaussian Noise (AWGN) channels and a Solid State Power Amplifier (SSPA), show that the proposed exponential companding schemes can offer better PAPR reduction, Bit Error Rate (BER), and phase error performance than the /spl mu/-law companding scheme.  相似文献   

17.
Since one of major problems of OFDM-based systems is high peak-to-average-power ratio (PAPR) of its transmitted signal, many PAPR reduction techniques and combined schemes with individual techniques have recently been developed. Among various techniques, the clipping technique has been widely used as a practical scheme owing to its low computational complexity and simplicity in implementation, while the selected mapping (SLM) technique is known to provide good PAPR reduction performance without signal distortion. Generally, the combined scheme of two PAPR reduction techniques, which are the clipping and the SLM, is expected to provide the enhanced performance of PAPR reduction, because the clipping noise of combined scheme would be less than that of single clipping technique, when the SLM technique is employed before clipping. However, the performance of clipping scheme with SLM technique has not been evaluated for practical systems over fading channels. In this paper, the performance of the clipping scheme with the SLM technique is theoretically analyzed and compared with simulation results over fading channels. The performance of combined scheme is analyzed with various clipping ratios, phase sets for SLM, and modulation schemes over flat and frequency selective fading channels. In addition, the effects of the clipping at the receiver and the oversampling on the BER performance are discussed. Based on the results of analysis, therefore, one can design the effective clipping scheme with the SLM technique for the PAPR reduction of OFDM-based systems.  相似文献   

18.
An efficient low complexity T transform which combines the Walsh Hadamard Transform and Discrete Fourier Transform (DFT) into a single fast orthonormal unitary transform is considered for the application in low density parity check coded orthogonal frequency division multiplexing (LDPC-OFDM) across additive white Gaussian noise channel model and multipath fading channel models. The T-transform is developed through the sparse matrices factorization method using Kronecker product scheme. T-transform based COFDM system, which is capable of reducing peak to average power ratio (PAPR) of the transmitted symbols and improving the bit error rate (BER) performance at a reasonable reduced complexity. Several signaling formats such as Quadrature phase shift keying and 16- ary Quadrature amplitude modulation (16-QAM) are considered. A T COFDM system is described which could provide an alternative to DFT-COFDM system, and is therefore a better alternative to balance the transform complexity, PAPR reduction and system performance. Simulation results are used to examine and compare the complexity, PAR and the BER performance of T-OFDM system and DFT-OFDM system. Numerical results show that the T-COFDM system outperforms the DFT-COFDM based in the multipath channel models.  相似文献   

19.
An approach for reducing the effects of multiplicative noise, such as fading, on the performance of mobile broadcasting transmission systems is introduced. The proposed method is based on a noise prediction/cancellation technique and is applied to phase-shift keyed (PSK) signals. By exploiting the statistical characteristics of the multipath fading signal and its strong correlation properties, a novel sequential receiver structure is derived that uses a detection algorithm which identifies the most probable transmitted sequence in the maximum-likelihood detection sense. The algorithm has been obtained for both Rayleigh and Rician fading channels. The proposed detection technique has been evaluated for various QPSK schemes operated in channels corrupted by a combination of additive white Gaussian noise (AWGN) and fading. The computer simulation results obtained show that by using a relatively simple receiver with a prediction algorithm of second order, considerable error floor reductions are achieved by the proposed receivers. As a direct result of these error floor reductions substantial bit error rate (BER) improvements of more than three orders of magnitude over conventionally detected schemes are obtained  相似文献   

20.
In this paper, a novel pilot‐symbol‐aided (PSA) technique is proposed for fading estimation in the land mobile satellite fading channels. The proposed technique combines the fading estimates obtained from a bandwidth‐efficient technique and a conventional technique according to the signal‐to‐noise ratios (SNRs) of the fading estimates. To enhance the transmission quality, trellis‐coded modulation (TCM) and diversity reception are employed in the system, and the combined estimates are subsequently used to correct the channel fading effects, to weight the signals from different diversity branches, and to provide channel state information to the Viterbi decoder. Monte Carlo computer simulation has been used to study the bit‐error‐rate (BER) performance of the proposed technique on trellis‐coded 16‐ary quadrature amplitude modulation in the frequency non‐selective Rician fading channels. Results have shown that the proposed PSA technique requires a very low bandwidth redundancy to provide satisfactory BER performance at low SNRs, and thus is suitable for use with TCM and diversity reception to achieve both bandwidth and power‐efficient transmission. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号