首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pH‐sensitive swelling and release behaviors of the anionic P(MAA‐co‐EGMA) hydrogels were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. There was a drastic change of the equilibrium weight swelling ratio of P(MAA‐co‐EGMA) hydrogels at a pH of around 5, which is the pKa of poly (methacrylic acid) (PMAA). At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. When the molecular weight of the pendent poly(ethylene glycol) (PEG) of the P(MAA‐co‐EGMA) increased, the swelling ratio decreased at a pH higher than 5. The pKa values of the P(MAA‐co‐EGMA) hydrogels moved to a higher pH range as the pendent PEG molecular weight increased. When the feed concentration of the crosslinker of the hydrogel increased the swelling ratio of the P(MAA‐co‐EGMA) hydrogels decreased at a pH higher than 5. In release experiments using Rhodamine B (Rh‐B) as a model solute, the P(MAA‐co‐EGMA) hydrogels showed a pH‐sensitive release behavior. At low pH (pH 4.0) a small amount of Rh‐B was released while at high pH (pH 6.0) a relatively large amount of Rh‐B was released from the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Two series of pH‐responsive biodegradable interpolymeric (IPN) hydrogels based on chitosan (Ch) and poly(vinyl alcohol) (PVA) were prepared for controlled drug release investigations. The first series was chemically crosslinked with different concentrations of glutaraldehyde and the second was crosslinked upon γ‐irradiation by different doses. The equilibrium swelling characteristics were investigated for the gels at 37°C in buffer solutions of pH 2.1 and 7.4 as simulated gastric and intestinal fluids, respectively. 5‐Fluorouracil (FU) was entrapped in the hydrogels, as a model therapeutic agent, and the in vitro release profiles of the drug were established at 37°C in pH 2.1 and 7.4. FTIR, SEM, and X‐ray diffraction analyses were used to characterize and investigate the structural changes of the gels with the variation of the blend composition and crosslinker content before and after the drug loading. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2864–2874, 2007  相似文献   

3.
The thermosensitive material that could be transformed into gel at 37°C was prepared from chitosan (dissolved in acetic acid/sodium acetate buffer solution) and a mixture of α‐ and β‐glycerophosphate (αβ‐GP). The thermosensitive characteristics, appearance, and structure of the hydrogel were all affected by the pH, ionic strength, and CS/αβ‐GP ratio. The optimal conditions for the preparation of a transparent CS‐αβ‐GP thermosensitive hydrogel were pH 4.6, ionic strength 0.15 mol/L, and a CS/αβ‐GP ratio of 8.8/1.2 (v/v). The hydrogel was stable for at least 3 months at 4°C. We believe that hydrogen bonding interactions between the N? H (and C?O) groups of chitosan and the O? H groups of αβ‐GP play an important role during the process of sol‐to‐gel transition. The cumulative release of adriamycin from the CS‐αβ‐GP hydrogel, measured in PBS at pH 7.4, reached only 60 to 70% over 24 h, indicating that this material could be potentially used in a sustained drug delivery system. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Orally administrable hydrogel was prepared by crosslinking chitosan (CS) with γ‐poly(glutamic acid) (γ‐PGA) for an excellent pH‐responsive colon‐targeted drug delivery system. The stable crosslinked amide bond appeared in the shifted region of FTIR spectroscopy, and the tensile strength and elastic modulus were also reduced by crosslinking of CS and γ‐PGA. The surfaces of crosslinked hydrogel have a homogeneous pore array with pore size corresponding to the varied blending ratio. The swelling ratio was dramatically changed by increasing the pH from 3 to 6, and the responsiveness of swelling ratio to the reversible pH changes between 3 and 10 was reliable for 72 h. The drug diffusion rate was mainly dependent on the pH, and a water‐soluble tetrazolium (WST‐1) assay indicated that cytocompatibility of the hydrogel was in an acceptable range. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci. 2013  相似文献   

5.
Biodegradable and biocompatible copolymeric hydrogels based on sucrose acrylate, N‐vinyl‐2‐pyrrolidinone, and acrylic acid were designed and synthesized. Because of the growing importance of sugar‐based hydrogels as drug delivery systems, these new pH‐responsive sucrose‐containing copolymeric hydrogels were investigated for oral drug delivery. The sucrose acrylate monomer was synthesized and characterized. The copolymeric hydrogel was synthesized by free‐radical polymerization. Azobisisobutyronitrile (AIBN) was the free‐radical initiator employed and bismethyleneacrylamide (BIS) was the crosslinking agent used for hydrogel preparations. Homopolymeric vinyl pyrrolidone hydrogels were also prepared by the same technique. The hydrogels were characterized by differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. Equilibrium swelling studies were carried out in enzyme‐free simulated gastric and intestinal fluids (SGF and SIF, respectively). These results indicate the pH‐responsive nature of the hydrogels. The gels swelled more in SIF than in SGF. A model drug, propranolol hydrochloride (PPH), was entrapped in these gels and the in vitro release profiles were established separately in both enzyme‐free SGF and enzyme‐free SIF. The drug release was found to be faster in SIF. About 93 and 99% of the entrapped drug was released over a period of 24 h in SGF and SIF, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2597–2604, 2002  相似文献   

6.
Hydrogel composed of β‐cyclodextrin (β‐CD) and poly(vinyl alcohol) was prepared in a strong alkaline condition using epichlorohydrin as a crosslinker. Phenylpropionic acid (PPA) and naphthylamine (NA) were loaded in the cavities of β‐CD residues to endow the hydrogel with a dual pH‐sensitive characteristic. In release experiments using fluorescein isothiocyanate‐dextran (FITC‐dextran) as a dye, PPA/NA‐loaded hydrogel exhibited an extensive release not only in acidic conditions (e.g. pH 3.0) but also in alkaline conditions (e.g. pH 9.0). PPA and NA will be highly ionized at the alkaline and the acidic pH and they could promote swelling of the hydrogel, causing an extensive release at those pH values. However, the release was suppressed at mid pH values (e.g. pH 5.0 and pH 7.4), possibly due to the formation of salt bridges between PPA? and NA+. In fact, the degree of swelling at mid pH was lower than that observed at strong acidic pH and alkaline pH. According to SEM images, the pore size and the texture compactness of hydrogels which had been subjected to swelling at different pH values could also account for the dual pH‐sensitive releases. The hydrogels exhibited dual pH sensitivities in terms of FITC‐dextran release and swelling. These hydrogels might be used as a pH‐sensitive vehicle for water‐soluble drugs. © 2013 Society of Chemical Industry  相似文献   

7.
Poly(2‐ethyl‐2‐oxazoline) and acrylic acid were copolymerized in different compositions using γ‐rays‐induced polymerization and cross‐linking to obtain a series of pH‐sensitive hydrogels. The preparation parameters that may affect the copolymerization process such as the feed solution composition and irradiation dose were optimized. Swelling characteristics of the obtained polymeric hydrogels were evaluated. The results show the significant effects of the hydrogel composition, soaking time, and pH on the swelling equilibrium. The diffusion parameters obtained at pH 1 and 7 show the possibility of using the prepared hydrogels in the field of colon‐specific drug delivery systems. Ibuprofen as a model drug was loaded into (poly(2‐ethyl‐2‐oxazoline)/acrylic acid) copolymer hydrogel to investigate their drug release behavior at different pH values. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Protein conjugates consisting of hydroxyethyl methacrylate and acrylic acid monomers in the presence of bovine serum albumin (BSA) were prepared by gamma irradiation to examine the potential use of these hydrogels in the controlled drug release systems. The study parameter was the BSA content in the as‐prepared conjugates. Polymers were characterized with FTIR, scanning electron microscopy (SEM), and swelling studies. The polymerization reaction caused the rearrangement of the BSA carbonyl hydrogen bonding and finally led to the modification of the BSA secondary structure as proved by FTIR. SEM proved that the prepared conjugates matrices are porous, with a three‐dimensional interconnected microstructure. The swelling kinetics of the hydrogels and the release dynamics of an anticancer model drug (flutamide) have been studied. High equilibrium swelling values, up to 1550%, could be observed and were correlated with the increase in pH, temperature, and BSA content. The mechanism of swelling changed from Fickian to non‐Fickian by reducing the acidity of the medium. This study proved that there is a direct relationship between the protein content in the conjugates and both the loaded and the released drug. These pH responsive conjugates may be exploited for the delivery of flutamide. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Hydrogels based on n‐alkyl methacrylate esters (n‐AMA), acrylic acid, and acrylamide crosslinked with 4,4′‐di(methacryloylamino)azobenzene were prepared. Swelling behavior of the hydrogels was studied by the immersion of slabs in buffered solutions at pH 2.2–7.4. The diffusion of water into the slabs was discussed on the stress relaxation model of polymer chains. The results obtained are in good agreement with Schott's second‐order diffusion kinetics. The constants A and B of Schott's kinetics equation depend on the balance of hydrophobicity/hydrophilicity, the rigidity/flexibility, and the degree of crosslinking. The factors that exert the greatest influence on the swelling behavior of the gels include the degree of crosslinking, the lengths of the n‐AMA side chains, and pH values. By adjusting these factors, the degree of swelling of the hydrogels in the small intestine can be controlled, and consequently the drugs may avoid being released before arriving in the colon. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2835–2842, 2002; DOI 10.1002/app.10259  相似文献   

10.
In this study hydrogels were synthesized by the copolymerization of acrylamide and itaconic acid in the presence of poly(N‐vinyl‐2‐pyrrolidone) in an aqueous medium. The incorporation of a small amount of itaconic acid resulted in the transition of the swelling behavior from Fickian to non‐Fickian. The hydrogels showed good response to the valency of the counterions and pH of the swelling media. The equilibrium water uptake increased with the pH of the external solution, thus attaining a maximum value at pH 7–8. The gels exhibited a number of deswelling–swelling cycles while maintaining mechanical strength and shape stability. The amount of itaconic acid present in the system affected the swelling behavior of the hydrogels in a rather unusual way. At pH 2.0 the equilibrium water uptake increased with the amount of acid monomer up to 15 mM, remained almost constant for a very small range of concentrations (i.e., up to 22 mM), and then finally decreased with the further increase of the acid content. However, a continuous increase was observed at the pH 7.0 of the swelling media. The hydrogels showed very poor temperature dependency and the activation energies for the samples with and without itaconic acid were 29.09 and 19.92 kJ mol?1, respectively. Finally, the swelling and deswelling processes were explained on the basis of two different mechanisms that were followed by the gels. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1717–1729, 2002  相似文献   

11.
Cylindrical hydrogels, composed of starch and poly(acrylic acid), were synthesized, and their swelling behavior was studied as a function of the pH of the medium. The gels underwent a sharp transition from Fickian swelling behavior (swelling exponent n = 0.30) to non‐Fickian swelling behavior (n = 0.96) as the pH of the swelling medium changed from 2.0 to 7.4. The hydrogels also underwent partial enzymatic degradation in an amylase‐containing medium of pH 7.4 at 37°C. The effects of the enzyme concentration in the swelling media, the amount of starch present in the gel, the initial water content, the degree of crosslinking, and the diameter of cylindrical hydrogels on the degradation behavior were studied. The degradation of the gels followed Michaelis–Menten kinetics, and the value of the Menten constant was 41.62 × 10?2. The gels exhibited minimum swelling in an acidic pH medium through the formation of a complex hydrogen‐bonded structure and underwent enzymatic degradation in a medium of pH 7.4 (i.e., simulating intestinal fluid) along with chain‐relaxation‐controlled swelling. Therefore, the gels have potential for colon‐targeted drug delivery. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3630–3643, 2004  相似文献   

12.
The waste problem of the rebar inhibitors is very serious due to that it is a long time before they can exert their best effect in the concrete and they are kept losing all the time. However, there is still no effective solution to alleviate such situation. Meanwhile, drug delivery control technology based on environmental sensitive polymers has been successfully applied in biomedical fields. Thus, poly(acrylic acid)–acrylamide was synthesized as smart carrier for controlling rebar inhibitors delivery in concrete. Dipotassium hydrogen phosphate as model drug was encapsulated inside the polymeric particles via a self‐assembly process. The pH‐responsive activities of the polymeric particles were estimated by monitoring their swelling performances in solutions of different pH values and the drug delivery control characteristics were studied in simulated concrete pore solutions. The results indicate the polymeric particles deserve network structures with high porosity and exhibit excellent pH‐responsive activities, which can perform as perfect intelligent carriers whereas the releasing of the inhibitors follows the first‐order kinetic law. The work suggests a new application field of drug delivery control technology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45886.  相似文献   

13.
Hydrogels, composed of poly(acrylamide‐co‐maleic acid) were synthesized and the release of vitamin B2 from these gels was studied as a function of the pH of the external media, the initial amount of the drug loaded, and the crosslinking ratio in the polymer matrix. The gels containing 3.8 mg of the drug per gram gel exhibit almost zero‐order release behavior in the external media of pH 7.4 over the time interval of more than their half‐life period (t1/2). The amount of the drug loaded into the hydrogel also affected the dynamic release of the encapsulated drug. As expected, the gels showed a complete swelling‐dependent mechanism, which was further supported by the similar morphology of the swelling and release profiles of the drug‐loaded sample. The hydrophilic nature of the drug riboflavin does not contribute toward the zero‐order release dynamics of the hydrogel system. On the other hand, the swelling osmotic pressure developed between the gels and the external phase, due to loading of the drug by equilibration of the gels in the alkaline drug solution, plays an effective role in governing the swelling and release profiles. Finally, the minimum release of the drug in the swelling media of pH 2.0 and the maximum release with zero‐order kinetics in the medium of pH 7.4 suggest that the proposed drug‐delivery devices have a significant potential to be used as an oral drug‐delivery system for colon‐specific delivery along the gastrointestinal (GI) tract. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1133–1145, 2002; DOI 10.1002/app.10402  相似文献   

14.
Graft polymerization of itaconic acid on tragacanth gum (TG) was carried out using potassium persulfate as initiator to develop smart hydrogels for drug delivery systems. The effect of the grafting parameters on the degree of grafting was investigated. The grafting was significantly influenced by the reaction medium, the reaction temperature and the monomer concentration. The monomer dependency of the system was found to be 1.52. The hydrogels were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry and X‐ray diffraction. The grafted TG had an amorphous nature and exhibited excellent swelling in water and strong dependence on the pH of the medium. The grafted TG showed pH‐dependent release of ciprofloxacin which offers the possibility of using these materials in colon‐specific drug targeting for human healthcare systems. © 2018 Society of Chemical Industry  相似文献   

15.
For a first step in the development of an intelligent delivery system for a nonapeptide as an α‐MSH antagonist, pH‐responsive P(MAA‐co‐EGMA) hydrogel microparticles were prepared and their feasibility as intelligent delivery carriers was evaluated. There was a drastic change in the swelling ratio of P(MAA‐co‐EGMA) microparticles at a pH of around 5 and as the MAA amount in the hydrogel increased, the swelling ratio increased at a pH above 5. The loading efficiency of the nonapeptide at pH 7 increased with the amount of Methacrylic acid (MAA) in the hydrogel and at pH 2, where the electrostatic attraction was greatest, a high loading efficiency was not obtained because of the low swelling ratio of the hydrogel. The P(MAA‐co‐EGMA) microparticles demonstrated a pH‐sensitive release behavior for the nonapeptide. In addition, the P(MAA‐co‐EGMA) microparticles showed a protective ability for the nonapeptide and preserved the stability of the nonapeptide. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

16.
Novel acrylic monomers (β‐CD‐A and β‐CD‐6‐EA) containing β‐cyclodextrin (β‐CD) with different extent of substitution were prepared by using dicyclohexylcarbodiimide (DCC) as a condensation agent at room temperature. Two kinds of functional hydrogels were also synthesized by copolymerization of β‐CD‐A and β‐CD‐6‐EA with acrylic acid (AAc) using a redox initiator system in aqueous solution. The nuclear magnetic resonance (1H NMR), infrared spectroscopy (IR), thermogravimetric analysis (TGA) were employed to character the molecular structures of β‐CD modified monomers and their copolymers. The swelling experiments indicate that the hydrogels with different equilibrium swelling ratio (ESR) possess obvious pH‐sensitivity and distinct dynamic swelling behavior. Using an anti‐cancer drug, chlorambucil (CHL), able to form complexes with β‐CD in water, as a model compound, the controlled drug release behaviors of these hydrogels were investigated. The release behavior of CHL from two kinds of hydrogels synthesized reveals that the release rate of CHL can be effectively controlled by pH values, cross‐linking density, and β‐CD content. In addition, it is found that the β‐CD with the proper frame and concentration can increase release efficiency of CHL from the hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
BACKGROUND: A considerable amount of research has been focused on smart hydrogels that can respond to external environmental stimuli, especially temperature and pH. In this study, fast responsive thermo‐ and pH‐sensitive poly[(N,N‐diethylacrylamide)‐co‐(acrylic acid)] hydrogels were prepared by free radical copolymerization in aqueous solution using poly(ethylene glycol) (PEG) as a pore‐forming agent. RESULTS: Swelling studies showed that the hydrogels produced had both temperature and pH sensitivity. The deswelling kinetics at high temperature demonstrated that the shrinking rates were influenced by the addition of the pore‐forming agent and the amount of acrylic acid in the initial total monomers. The deswelling curves in low‐buffer solutions had two stages. Pulsatile swelling studies indicated that the PEG‐modified hydrogels were superior to the normal ones. These different swelling properties were further confirmed by the results of scanning electron microscopy. CONCLUSION: Such fast responsive thermo‐ and pH‐sensitive hydrogels are expected to be useful in biomedical fields for stimuli‐responsive drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
The aim of this work was to synthesize and to characterize new pH‐sensitive hydrogels that can be used in the controlled release of drugs, useful for dermal treatments or ophthalmology's therapies. Copolymers containing 2‐hydroxyethyl methacrylate (HEMA) with different amounts of 2‐(diisopropylamino)ethyl methacrylate (DPA) (10 and 30 wt %) and different amounts of crosslinker agent, ethylene glycol dimethacrylate (EGDMA) (1 and 3 wt %) were prepared by bulk photo‐polymerization. The copolymers were fully characterized by using Fourier‐transform infrared (FTIR) spectra, differential scanning calorimetry, thermogravimetric analysis, UV–visible spectroscopy, and measuring water content and dynamic swelling degree. The results show that modifications in the amount of DPA and/or crosslinker in the hydrogel produce variations in the thermal properties. When adding of DPA, we observed an increase in the thermal stability and decomposition temperature, as well as a change in the mechanism of decomposition. Also a decrease in the glass transition temperature was observed with regard to the value for pure pHEMA, by the addition of DPA. The water content of the hydrogels depends on the DPA content and it is inversely proportional to both the pH value and the crosslinking degree. Pure poly‐HEMA films did not show important changes over the pH range studied in this work. The dynamic swelling curves show the overshooting effect associated with the incorporation of DPA, the pH of the solution, and the crosslinking density. On the other hand, no important variations in the optical properties were observed. The synthesized hydrogels are useful as a drug delivery pH‐sensitive matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Novel enzyme‐based hydrogels for drug delivery were prepared by combining dextran with 5,5′‐azodisalicylic acid using isophorone diisocyanate as the crosslinking agent. The structure of the resultant dextran/5,5′‐azodisalicylic acid hydrogels was determined by infrared spectra, and the properties of the hydrogels were characterized by swelling measurements and scanning electron microscopy analysis. It was found that changing the concentration of 5,5′‐azodisalicylic acid affected the crosslinking density of the hydrogels and resulted in significant differences in the water swelling property and degradability of the hydrogels. Compared with their degradability, the degradation of the hydrogels seemed to be more pronounced by azoreductase in cecum content medium than that by hydrolysis in phosphate buffer solution (PBS). Also, the release rate of the protein in cecum content medium was faster than that in PBS. Attributing to the results of the resultant hydrogels described earlier, it could be concluded that dextran/5,5′‐azodisalicylic acid hydrogels could be used as a potential enzyme‐based carrier for colon‐specific drug delivery. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Hydrogels composed of etherificated sodium alginate (ESA), sodium acrylic acid (NaAA), and poly (vinyl alcohol) (PVA) were synthesized by aqueous solution polymerization. The effects of reaction variables such as terminal pH, ions, and ionic strength on hydrogel swelling ratio (SR) were determined and compared. SR was influenced strongly by pH and ionic strength. SR increased with increasing pH but tended to decrease with PVA content. At a given ionic strength, SR of ESA/NaAA/PVA hydrogel was dependent on the valence of anion; SR was higher in multivalent anion salt solution than in monovalent anion salt solution, i.e., SRK2SO4 > SRKCl and SRNa2SO4 > SRNaCl. The swelling kinetic of the hydrogels showed Fickian kinetic diffusion in acidic media and non‐Fickian behavior in alkaline media. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号