首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oxidative stability of edible oils and samples of rapeseed oil with added antioxidants, metal ions, phospholipids and oxidized oil was assessed by a method involving oxidation of a thin film of oil with ultraviolet (UV) irradiation at 100°C. Induction times determined by this method were compared with those determined with the Rancimat at 100°C. The two methods agreed well in describing the effects of additives on the stability of the edible oil. Induction times were considerably shorter for the thin-film UV method, and the method may have potential as an accelerated test method for assessing the effect of additives on the oxidative stability of relatively stable oils and fats. The correlation between the Rancimat and the thin-film UV induction times also was assessed at 80°C for rapeseed oil containing additives, but there was no advantage in using the lower temperature alone because the induction times were 2–7 times longer than at 100°C. However, use of two elevated temperatures is likely to improve predictions of stability at lower temperatures, especially for samples containing copper, which have an exceptionally high-temperature coefficient. The thin-film UV method showed a poorer agreement with the Rancimat for comparing the oxidative stability of some fats and oils. For instance, corn oil was more stable than soybean oil in the Rancimat test but the order of stability was reversed in the thin-film UV test. Cocoa butter was much more stable in the Rancimat test than when assessed by the thin-film UV test.  相似文献   

2.
We aimed at investigating oxidative stability and changes in fatty acid and tocopherol composition of extra virgin olive oil (EVOO) in comparison with refined seed oils during short‐term deep‐frying of French fries, and changes in the composition of the French fries deep‐fried in EVOO. EVOO samples from Spain, Brazil, and Portugal, and refined seed oils of soybean and sunflower were studied. Oil samples were used for deep‐frying of French fries at 180 °C, for up to 75 min of successive frying. Tocopherol and fatty acid composition were determined in fresh and spent vegetable oils. Tocopherol, fatty acid, and volatile composition (by SPME–GC–MS) were also determined in French fries deep‐fried in EVOO. Oil oxidation was monitored by peroxide, acid, and p‐anisidine values, and by Rancimat after deep‐frying. Differential scanning calorimetry (DSC) analysis was used as a proxy of the quality of the spent oils. EVOOs presented the lowest degree of oleic and linoleic acids losses, low formation of free fatty acids and carbonyl compounds, and were highly stable after deep‐frying. In addition, oleic acid, tocopherols, and flavor compounds were transferred from EVOO into the French fries. In conclusion, EVOOs were more stable than refined seed oils during short‐term deep‐frying of French fries and also contributed to enhance the nutritional value, and possibly improve the flavor, of the fries prepared in EVOO.  相似文献   

3.
4.
The objective of this work was to study the evolution of oxidation under oxidative stability index (OSI) conditions using the Rancimat apparatus. Sunflower oils with different degrees of unsaturation (conventional high‐linoleic sunflower oil, genetically modified high‐oleic sunflower oil, and a 1 : 1 mixture of both of them) and virgin olive oil were used. The sunflower oils were tested at 100 °C, while the olive oil was assayed at 100, 110 and 120 °C. Samples were analyzed at different time points and conductivity values, until the induction period (IP) was overpassed. A combination of adsorption and size‐exclusion chromatography was used for the quantification of oxidized triacylglycerol (TG) monomers, dimers and polymers. Additionally, peroxide values (PV) and ultraviolet absorption at 270 nm (K270), as well as losses of tocopherols, were measured. The results showed that oxidized TG monomers were the only group of oxidation compounds that increased during the early oxidation stage. The end of the IP was marked by the initiation of polymerization after the exhaustion of tocopherols. In comparison with reported results obtained at room temperature, the main difference found was that the amounts of oxidation compounds at the end of the IP were much lower at OSI test temperatures. With the exception of the K270 values, the results also showed that the IP endpoints provided by the OSI test were slightly higher than those obtained by quantification of oxidized TG monomers or by PV determination.  相似文献   

5.
The induction time for oxidative stability by the Rancimat method has been compared with peroxide development during storage at 20°C for six edible oils and rapeseed oil samples with added metal ions, antioxidants or phosphatidylethanolamine. The Rancimat method correlated highly (r=0.966;P=0.000) with oil stability measured by peroxide development for all samples except the oils containing added phosphatidylethanolamine or added butylated hydroxytoluene.  相似文献   

6.
Camelina oil was found to have a much lower Oil Stability Index and higher p-anisidine rates in the oven storage test than either rapeseed or sunflower oils. Stabilization of camelina oil was evaluated with 21 food grade synthetic and natural antioxidants and antioxidant formulations, using both the Oil Stability Index (OSI) and the oven storage test. The Oil Stability Index of camelina oil was able to be increased above that of rapeseed oil with TBHQ and its formulation with citric acid, and above that of sunflower oil with EGC, EGCG, carnosic acid, propyl gallate, rosemary extract with ascorbyl palmitate or with gallic acid. para-Hydroxyphenols were found to be more effective than ortho-hydroxyphenols and monohydroxyphenols had no significant effect on the OSI. Good correlation (R 2 = 0.96) was found between the stabilizing effect of ortho-hydroxyphenols and the molarity of the phenyl hydroxyl groups per weight of antioxidant. The oven storage test carried out with six of the evaluated antioxidants indicated that p-anisidine rates of camelina oil stabilized with commercial formulations of TBHQ with citric acid or rosemary extract with ascorbyl palmitate were about the same as that of sunflower oil, an almost 90% rate reduction when compared to camelina oil. Accordingly, camelina oils stabilized with TBHQ/citric acid and rosemary extract/ascorbyl palmitate formulations were more stable than rapeseed and sunflower oils, respectively in terms of OSI induction times and p-anisidine rates.  相似文献   

7.
Fresh raspberry (Rubus idaeus), cultivar Willamette, was freeze‐dried (lyophilization). A byproduct of lyophilization is “fine dust” of raspberry consisting of finely ground raspberry fruit body and seed. The seeds were separated. The seed oil was isolated and its physical and chemical characteristics were determined. Parameters that characterize the seed and quality of the oil were examined, including fatty acid composition, oxidative stability under different storage conditions, and radical‐scavenging activity. The fatty acid composition was determined by GC/FID and the contents of the dominant fatty acids were found as: oleic 16.92%, linoleic 54.95%, and α‐linolenic acid 23.97%. The oxidative stability of the oil was poor. The induction period by Rancimat test at 100 °C was 5.2 h. The radical‐scavenging activity is similar to that of resveratrol [1,3‐benzenediol 5‐(1E‐2‐4‐hydroxy‐phenyl‐ethyl)]. Although this product is used in the candy industry, it would be far more useful if raspberry oil of satisfactory quality could be extracted. This paper demonstrates that sifted lyophilized seeds can be used for the extraction of oils. This process allows for maximal usage of the byproducts, reduces losses and it increases the development of new products.  相似文献   

8.
Four samples of olive oil were oxidized under polythermal (dynamic) conditions in the cell of a normal‐pressure differential scanning calorimeter (DSC) and in the Metrohm Rancimat apparatus. The DSC experiments were carried out in an oxygen flow atmosphere using different linearly programmed heating rates in the range of 4–20 °C/min. Through DSC exotherms, the extrapolated onset temperatures were determined and used for the assessment of the thermal‐oxidative stabilities of the samples. Using the Ozawa‐Flynn‐Wall method and the Arrhenius equation, the activation energies (Ea), pre‐exponential factors (Z) and reaction rate constants (k) for oil oxidation under DSC conditions were calculated. The Rancimat measurements of oxidation induction times were carried out under isothermal conditions in an air atmosphere at temperatures from 100 to 140 °C with intervals of 10 °C. Using the Arrhenius‐type correlation between the inverse of the induction times and the absolute temperature of the measurements, Ea, Z, and k for oil oxidation under Rancimat conditions were calculated. The primary kinetic parameters derived from both methods were qualitatively consistent and they help to evaluate the oxidative stabilities of oils at increased temperatures.  相似文献   

9.
Determination of oxidative stability of different edible oils, fats, and typical fat products was made using the Rancimat method and the active oxygen method. Induction periods (IP) were recorded under controlled conditions at 110, 120, and 130 ± 0.1°C for all products and over a range of 100–160°C for selected fats. A general oil stability evaluation industrial shortenings and vanaspati to be the most stable fats, with IP ranging from 10.00 to 15.47 h. Margarine and butter samples (IP, 4.98–6.04 h) were also found to show fair oxidative stability. Among the extracted and open-market salad-grade cooking oils, rapeseed oil (IP, 4.10 h) and soybean oil (IP, 4.00 h) showed the highest oxidative stability, whereas Salicornia bigelovii oil (IP, 1.40 h) was the least stable. The induction periods of typical fat products ranged from 2.59 to 9.20 h. CV for four determinations were <5.2% for shortening and vanaspati products and <4.3% for various vegetable oils, margarine, butter, and typical fat products. Rancimat IP values obtained at 110, 120, and 130°C were 40–46, 20–25, and 9–13% of active oxygen method values, respectively, corresponding to a decrease in Rancimat IP by a factor of 1.99 with each 10°C increase in temperature. Similarly, in the temperature range 100–160°C, an increase of 10°C decreased the Rancimat IP by a factor of 1.99  相似文献   

10.
Fruits from three Tunisian cultivars of Olea europea L. grown in the southeast of Tunisia were harvested at the maturity stage of ripeness and immediately processed with a laboratory mill. There are as yet no data on the chemical composition of virgin olive oils from the southeast of Tunisia, an area characterized by an arid condition of growth for olive trees. Our results showed significant differences in the analytical parameters examined for the three cultivars such as fatty acid composition, total phenols and o‐diphenols, and the content of chlorophylls and carotenoids, confirming the importance of genetic factors in the chemical characteristics of the oil. Headspace solid‐phase microextraction (HS‐SPME) was applied to the analysis of volatile compounds of virgin olive oils. Forty‐eight compounds were isolated and characterized by GC‐RI and GC‐MS, representing 94.1–98.1% of the total amount. (E)‐Hex‐2‐enal, the main compound extracted by SPME, characterized the olive oil headspace for all samples. So, it was clearly shown that there were qualitative and quantitative differences in the proportion of volatile constituents from oils of the various cultivars.  相似文献   

11.
The increased susceptibility of in‐plant recycled polyamide 6,6 toward thermooxidation was shown by headspace solid‐phase microextraction with gas chromatography/mass spectrometry (HS‐SPME/GC‐MS), tensile testing, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). A correlation between the deterioration in mechanical properties and the formation of degradation products due to thermooxidation was found, and the most prominent decrease in mechanical properties coincided with the largest increase in the abundance of degradation products. The recycled materials had a shorter induction period toward oxidation, and their mechanical properties deteriorated faster than the mechanical properties of virgin material. The same trend was observed with HS‐SPME/GC‐MS because degradation products were found for recycled materials after oxidation times shorter than those for virgin material. Furthermore, larger amounts of degradation products were formed in the recycled materials. The high sensitivity of HS‐SPME/GC‐MS as an analytical tool was demonstrated because it was able to detect changes caused by oxidation considerably earlier than the other methods. Unlike DSC and FTIR, it could also show differences between samples recycled for different times. Four groups of degradation products—cyclic imides, pyridines, chain fragments, and cyclopentanones—were identified in thermooxidized polyamide 6,6. After 1200 h of thermooxidation, 1‐pentyl‐2,5‐pyrrolidinedione was the most abundant degradation product. Approximately four times more 1‐pentyl‐2,5‐pyrrolidinedione was formed in polyamide recycled three times than in virgin polyamide. Pyridines and chain fragments behaved toward oxidation and repeated processing like cyclic imides; that is, their amounts increased during oxidation, and larger amounts were formed in recycled materials than in virgin material. The cyclopentanone derivatives were present already in unaged material, and their amounts decreased during oxidation. Cyclopentanones were not formed because of the thermooxidation of polyamide 6,6. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3396–3407, 2002  相似文献   

12.
This study highlights the application of two analytical techniques, namely GC‐FID and FTIR spectroscopy, for analysis of refined‐bleached‐deodorized palm oil (RBD‐PO) in adulterated sesame oil (SeO). Using GC‐FID, the profiles of fatty acids were used for the evaluation of SeO adulteration. The increased concentrations of palmitic and oleic acids together with the decreased levels of stearic, linoleic, and linolenic acids with the increasing contents of RBD‐PO in SeO can be used for monitoring the presence of RBD‐PO in SeO. Meanwhile, FTIR spectroscopy combined with multivariate calibration of partial least square (PLS) has been successfully developed for the detection and quantification of RBD‐PO in SeO using the combined frequencies of 3040–2995, 1660–1654, and 1150–1050 cm?1. The values of coefficient of determination (R2) for the relationship between actual versus FTIR‐calculated values of RBD‐PO in SeO and root mean square error of calibration (RMSEC) obtained are 0.997 and 1.32% v/v, respectively. In addition, using three factors, the root mean square error of prediction (RMSEP) value obtained using the developed PLS calibration model is relatively low, i.e., 1.83% v/v. Practical Application: The adulteration practice is commonly encountered in fats and oils industry. It involves the replacement of high value edible oils such as sesame oil with the lower ones like palm oil. Gas chromatography and FTIR spectroscopy can be used as reliable and accurate analytical techniques for detection and quantification of palm oil in sesame oil.  相似文献   

13.
The effect of red pepper supercritical fluid extracts (SFE) on the oxidative stability of extra‐virgin olive oil was evaluated using accelerated stability tests [Rancimat and differential scanning calorimetry (DSC) methods] and by measuring the changes in the levels of polyunsaturated fatty acid primary and secondary oxidation products during storage under ambient conditions. SFE were produced according to a central composite rotatable design, at a constant temperature (40 °C), different pressures (15–23 MPa) and superficial velocities (0.04–0.08 cm/s). The results showed that the red pepper extracts produced at low extraction pressure and superficial velocity (e.g. 16.2 MPa and 0.046 cm/s) containing low/intermediate capsaicinoid levels did not affect olive oil stability. The extracts produced at higher pressure showed a slight pro‐oxidant activity. The K232 and K270 values always fell within the limit set by the European legislation for the quality characteristics of olive oil containing no additives. Evaluation of oxidative stability using DSC was found to be a useful methodology, which demands smaller oil samples and shorter times in comparison with the methodology using the Rancimat apparatus. Red pepper SFE obtained at low extraction pressures can be used in order to produce stable flavoured olive oils.  相似文献   

14.
Whereas solid phase microextraction (SPME) combined with gas chromatography is a wide‐spread technique in certain fields of food analysis this technique is quite new for the analysis of vegetable oils. The method is sensitive enough to follow changes in the oxidative state of vegetable oils by measuring the amount of volatile materials produced during storage and the refining process. In the present study degummed rapeseed oil was bleached using different activated bleaching earths applied in four dosages. Their effect on lipid degradation was determined both by traditional methods (e.g. UV absorbance, p‐anisidine value) and by the SPME‐HS method. Although the p‐anisidine value (p‐AV) gives only the concentration of β‐unsaturated aldehydes it correlates well to the amount of total volatile substances as determined by SPME at the headspace of the sample. The extracted volatile materials were separated and identified by gas chromatography combined with mass spectrometry. SPME gives more information about the stage of oxidation and the applied bleaching earth by quantifying the volatile compounds. Additionally SPME does not require any toxic reagent such as p‐methoxy aniline which is used to determine the p‐AV. Although bleaching is very important it was disregarded in recent years. Therefore one of the aims of the present study is to draw back more attention towards bleaching.  相似文献   

15.
Changes in chemical, physical and sensory parameters of high‐oleic rapeseed oil (HORO) (NATREON?) during 72 h of deep‐fat frying of potatoes were compared with those of commonly used frying oils, palm olein (PO), high‐oleic sunflower oil (HOSO) and partially hydrogenated rapeseed oil (PHRO). In addition to the sensory evaluation of the oils and the potatoes, the content of polar compounds, oligomer triacylglycerols and free fatty acids, the oxidative stability by Rancimat, the smoke point and the anisidine value were determined. French fries obtained with HORO, PO and HOSO were still suitable for human consumption after 66 h of deep‐fat frying, while French fries fried in PHRO were inedible after 30 h. During the frying period, none of the oils exceeded the limit for the amount of polar compounds, oligomer triacylglycerols and free fatty acids recommended by the German Society of Fat Science (DGF) as criteria for rejection of used frying oils. After 72 h, the smoke point of all oils was below 150 °C, and the amount of tocopherols was reduced to 5 mg/100 g for PHRO and 15 mg/100 g for HORO and HOSO. Remarkable was the decrease of the oxidative stability of HOSO measured by Rancimat. During frying, the oxidative stability of this oil was reduced from 32 h for the fresh oil to below 1 h after 72 h of frying. Only HORO showed still an oxidative stability of more than 2 h. From the results, it can be concluded that the use of HORO for deep‐fat frying is comparable to other commonly used oils.  相似文献   

16.
17.
This work presents a comparison between a new method for the determination of the oxidative stability of edible oils at frying temperatures, based on near‐infrared emission spectroscopy (NIRES), and the Rancimat method at 110 °C. In the NIRES‐based method, the induction time (IT) is determined by means of the variation of the emission band at 2900 nm during heating at 160 °C. The comparison between the IT values obtained with the two methods for 12 samples of edible oils shows some correlation for samples of the same type once there is an agreement on the sequence of highest to lowest IT values between the methods, but a poor correlation considering all samples (correlation coefficient of 0.78). This lack of correlation demonstrates that the results obtained with the Rancimat method cannot be used as an indication of the oxidative stability, or the resistance to degradation, of edible oils at frying temperatures. The difference in the heating temperatures used in the two methods leads to 20–36 times higher IT values for the Rancimat method in relation to the NIRES‐based method, but with similar repeatabilities (2.0 and 2.8%, respectively).  相似文献   

18.
The wax ester fraction of various plant oils was isolated by normal‐phase HPLC (NPLC) on‐line coupled to GC via the on‐column interface and applying concurrent eluent evaporation. The esters were analyzed by on‐line NPLC‐GC‐MS and by comprehensive two‐dimensional GC with flame ionization detection (GC×GC‐FID) off‐line combined with NPLC‐GC. GC×GC‐FID enables to group the various classes of wax esters, in particular the phytol esters, geranylgeraniol esters and the straight‐chain esters of palmitic acids and the unsaturated C18 acids. Optimization of the GC×GC columns and the conditions must take into account the limited thermostability of the diterpene esters. Chromatograms are shown for a range of oils, with particular focus on the various classes of wax esters in olive oil and the geranylgeraniol esters 22:0 and 24:0 in a variety of oils.  相似文献   

19.
Quantitative determination of the volatiles produced from oxidized vegetable oils is an important indicator of oil quality. Five vegetable oils, low-erucic acid rapeseed, corn, soybean, sunflower and high oleic sunflower, were stored at 60°C for four and eight days to yield oils with several levels of oxidation. Peroxide values of the fresh oils ranged from 0.6 to 1.8 while those of the oxidized oils were from 1.6 to 42. Volatile analysis by the multiple headspace extraction (MHE) technique, which includes a pressure and time controlled injection onto the gas chromatography (GC) column (a chemically bonded capillary column), was compared with that obtained by static headspace gas chromatography (SHS-GC). Several volatile compounds indicative of the oxidation of polyunsaturated fatty acids from the vegetable oils were identified and measured by MHE; pure compounds of twelve major volatiles also were measured by MHE, and peak area was determined. Multiple extractions of the oil headspace provided a more reproducible measure of volatile compounds than was obtained by SHS-GC. Concentration of all volatiles increased with increased oxidation as measured by peroxide value of the oil. Presented at the Annual American Oil Chemists' Society Meeting, May 8–12, 1988, Phoenix, AZ.  相似文献   

20.
An experimental investigation was carried out to evaluate the quality of virgin olive oils obtained when either a hammer‐crusher or a disk‐crusher were used for the olive paste preparation; the effect of the temperature rise caused by rapid olive crushing was also assessed. Oxidative degradation in the oils obtained from hammer‐crushed olives was significantly higher than in those obtained from disk‐crushed olives as shown by the levels of oxidised triacylglycerols and the results of the oven test. A significant inverse correlation (p <0.001) was found between the Rancimat induction time values and the amounts of oxidised triacylglycerols as determined by the high‐performance size exclusion chromatography analysis of polar compounds. These findings suggested that polar compound analyses, just as routine analyses, may be used as a suitable analytical tool to effectively evaluate the quality of virgin olive oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号