首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution and diffusion properties of cyclohexane, cyclohexanol, and cyclohexanone in poly(ethylene glycol) (PEG) and crosslinked PEG have been studied in the temperature range of 368.15 to 403.15 K using inverse gas chromatography (IGC) technique. The infinite dilute activity coefficient (Ω) and diffusion coefficient (D) have been determined for the above solvent/polymer systems. Accordingly, several thermodynamic functions, the diffusion pre‐exponential factor, and activation energy have been attained. The results showed a decrease in Ω and an increase in D with rising temperature. The order of the relative magnitude of Ω and D of the solvents were explained by comparing their interactions with the polymer and their collision diameters, respectively. Moreover, Ω and D in crosslinked PEG were smaller than those in PEG at various temperatures. The analysis of Ω, the infinite dilute selectivity and capacity showed the possibility of using crosslinked PEG as an appropriate membrane material for the separation of cyclohexane, cyclohexanol, and cyclohexanone mixture. A thermodynamic study also implied that the solvent sorptions in the polymers were all enthalpically driven in the experimental range. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

2.
It was determined that the thermal stability of poly(4‐methyl‐1‐pentene) (P4MP) was maintained up to 424°C in an inert atmosphere by thermogravimetric analysis. The retention diagrams of ethyl acetate, tert‐butyl acetate, and benzene on P4MP were plotted at temperatures between 30 and 280°C by inverse gas chromatography (IGC) technique. Melting temperature of the polymer was determined as 230 and 239.5°C by IGC and differential scanning calorimetry (DSC), respectively. The percent crystallinity of P4MP was obtained from the retention diagrams at temperatures below melting point. The percent crystallinity obtained by IGC is in good agreement with the ones obtained by DSC. Then, specific retention volume, V, weight fraction activity coefficient, Ω, Flory‐Huggins polymer‐solvent interaction parameter, χ, equation‐of‐state polymer‐solvent interaction parameter, χ, and effective exchange energy parameter, Xeff of octane, nonane, decane, undecane, dodecane, tridecane, n‐butyl acetate, isobutyl acetate, isoamyl acetate with P4MP, were determined between 240 and 280°C by IGC. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Poly(3‐mesityl‐2‐hydroxypropyl methacrylate) (PMHPMA) was synthesized in a 1,4‐dioxane solution with 2,2′‐azobisisobutyronitrile as the initiator at 60°C. The homopolymer and its monomer were characterized with 1H‐ and 13C‐NMR, Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, size exclusion chromatography, and elemental analysis techniques. According to size exclusion chromatography analysis, the number‐average molecular weight, weight‐average molecular weight, and polydispersity index of PMHPMA were 65,864 g/mol, 215,375 g/mol, and 3.275, respectively. According to thermogravimetric analysis, the carbonaceous residue value of PMHPMA was 14% at 500°C. The values of the specific retention volume, adsorption enthalpy, sorption enthalpy, sorption free energy, sorption entropy, partial molar free energy, partial molar heat of mixing, weight fraction activity coefficient of solute probes at infinite dilution (Ω), and Flory–Huggins interaction parameter (χ) were calculated for the interactions of PMHPMA with selected alcohols and alkanes by the inverse gas chromatography method at various temperatures. According to Ω and χ, selected alcohols and alkanes were nonsolvents for PMHPMA at 423–453 K. Also, the solubility parameter of PMHPMA (δ2) was found to be 24.24 and 26.33 (J/cm3)0.5 from the slope and intercept of (δ/RT) ? χ/V1 = (2δ2/RT1 ? δ/RT at 443 K, respectively [where δ1 is the solubility parameter of the probe, V1 is the molar volume of the solute, T is the column temperature (K), and R is the universal gas constant]. The glass‐transition temperature of PMHPMA was found to be 386 and 385 K by inverse gas chromatography and differential scanning calorimetry techniques, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 101–109, 2006  相似文献   

4.
Different values are reported in the literature for the intrinsic birefringence of the crystalline (Δn) and the amorphous (Δn) phases in nylon 6. Mostly, these values have either been determined by extrapolation (and then it is assumed that Δn = Δn) or calculated theoretically. In this study, intrinsic birefringence values Δn and Δn for nylon 6 were determined using the Samuels two-phase model which correlates sonic modulus with structural parameters. Three series of fiber samples were used: (1) isotropic samples of different degrees of crystallinity for estimation of E and E moduli at two temperatures. The following modulus values were obtained: 1.62 × 109 and 6.66 × 109 N/m2 for 28.5°C, and 1.81 × 109 and 6.71 × 109 N/m2 for ?20°C; (2) anisotropic, amorphous fiber samples for estimation of Δn = 0.076 and E = 1.63 × 109 N/m2 at 28.5°C; (3) semicrystalline samples of various draw ratios for estimations of Δn = 0.089 and Δn = 0.078. All measurements were carried out with carefully dried samples to avoid erroneous results caused by moisture.  相似文献   

5.
A new class of amphiphilic dendritic ABA triblock copolymers, which is based on organic linear polyethylene oxide (PEO) and inorganic dendritic carbosiloxane (CSO) was synthesized. The strategy used in synthesizing these materials is based on divergent method using hydrosilylation‐alcoholysis cycles. The reaction conditions and structural features of dendrimers were analyzed by different physicochemical techniques such as: GPC, NMR, UV spectroscopy, DSC, and viscometry. The generational limit of dendrimer after the first generation, OSC‐D‐PEO‐D‐CSO, forced us to employ HSiCl2CH3 as branching reagent. Also further hydrosilylation of the third generation yielded an irregular structure species. Self‐assembling and morphological studies of first, OSC‐D‐PEO‐D‐CSO, and second, OSC‐D‐PEO‐D‐CSO, generations in aqueous medium were monitored by using fluorescence, TEM and DLS techniques. However, the dendritic block copolymer with third generation, OSC‐D‐PEO‐D‐CSO, could not be dispersed in aqueous phase. The diameters of denderitic micelles had a narrow distribution in the ranges of 69 and 88 nm, respectively. Although the micelles were stable even in first generation, partition equilibrium constants of pyrene and critical micelle concentration in both of dendritic micelles imply that the micellar behaviors of the supramolecules strongly depend on the hydrophobic block's size in which increasing generation effectively promoted the micelle formation. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Dynamic adsorption behaviors between Cr(VI) ion and water‐insoluble amphoteric starches was investigated. It was found that the HCrO ion predominates over the initial pH ∼ 2–4, the CrO ion predominates over the initial pH ∼ 10–12, and both ions coexist over the initial pH ∼ 6–8. The sorption process occurs in two stages: the external mass transport process occurs in the early stage and the intraparticle diffusion process occurs in the long‐term stage. The diffusion coefficient of the early stage (D1) is larger than that of the long‐term stage (D2) for the initial pH 4 and pH 10. The diffusion rate of HCrO ion is faster than that of CrO ion for both processes. The D1 and D2 values are ∼ 1.38 × 10−7–10.1 × 10−7 and ∼ 0.41 × 10−7–1.60 × 10−7 cm2 s−1, respectively. The ion diffusion rate in both processes is concentration dependent and decreases with increasing initial concentration. The diffusion rate of HCrO ion is more concentration dependent than that of CrO ion for the external mass transport process. In the intraparticle diffusion process, the concentration dependence of the diffusion rate of HCrO and CrO ions is about the same. The external mass transport and intraparticle diffusion processes are endothermic and exothermic, respectively, for the initial pH 4 and pH 10. The kd values of the external mass transport and intraparticle diffusion processes are ∼ 15.20–30.45 and ∼ −3.53 to −12.67 kJ mol−1, respectively. The diffusion rate of HCrO ion is more temperature dependent than that of CrO ion for both processes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2409–2418, 1999  相似文献   

7.
Trimethylammoniumhydroxypropyl (TMAHP)–cellulose in 10 anionic forms (F?, Cl?, Br?, I?, HSO, NO, OH?, HCO, H2PO, CH3COO?) was prepared, and the influence of each anion on thermal degradation in inert atmosphere was studied. With the help of dynamic and isothermal thermogravimetry (TG) it was found that H2PO ions had the greatest retarding effect on TMAHP–cellulose degradation. From the values of rate constants it can be seen that all ionic forms of TMAHP–cellulose have the starting rate of thermal degradation greater than unmodified cellulose. The calculated values of activation energy of thermal degradation for different ionic forms are decreasing in following sequence: H2PO > F? > NO > I? > Br? > HCO > Cl? > HSO > OH? > unmodified cellulose > CH3COO?. From the results of pyrolyse measurements in combination with gas chromatography and mass spectrometry (Py–GC–MS) it follows that the products of the elimination of quarternary ammonium salts are trimethylamine, 3-hydroxy-2-propanone, and, in the case of OH? form, water. In all other ionic forms the third product is the corresponding acid.  相似文献   

8.
The self-step growth polymerization of RAf monomers in homogeneous, continuous flow stirred tank reactors (HCSTRs) is simulated under conditions of periodic feed concentration (with frequency ω and amplitude α). By having periodic operation, the polydispersity index of the polymer is found to increase by about 35% over the values at steady state. Periodic operation of HCSTRs is found to lead to gelation only for certain values of the frequency and the dimensionless residence time τ*. Gelling envelopes have been obtained to give conditions under which HCSTRs should be operated. These envelopes can be described in terms of two critical dimensionless residence times, τ and τ such that nongelling operation is always ensured when τ* < τ. For τ* > τ, periodic operation always leads to gelation, and HCSTRs cannot be used. For τ < τ* < τ, the gelling behavior is found to depend on the functionality f, amplitude α, and the dimensionless residence time τ*.  相似文献   

9.
A sulfonated polystyrene ethylene butylene polystyrene (SPSEBS)‐poly(vinyl alcohol) (PVA)‐Quaternized polystyrene ethylene butylene polystyrene (QPSEBS) bipolar membrane (BPM) was prepared by lamination method using PSEBS as the starting material, the functionalization of which was modified by sulfonation and amination while PVA was used as the intermediate layer to enhance the water splitting efficiency. The cross section view of SPSEBS‐PVA‐QPSEBS BPM was studied by SEM. Fourier transform infra‐red spectroscopy (FTIR) studies indicated that the prepared BPM contained –SO, –NR, and –C‐N functional groups. The thermal stability of the prepared BPM was studied by thermogravimetric analysis (TGA). Some of the BPM characteristics results showed that the co‐ion fluxes was greater for t(0.065) when compared with t(0.051) along with a water splitting capacity value of 0.88 for SPSEBS‐PVA‐QPSEBS BPM. The water dissociation flux was 2.8 × 10?5 mol/m2/s and 2.2 × 10?5 mol/m2/s for the acid (H+) and base (OH?), respectively. The other essential current‐voltage characteristics and permeate flux across the membrane were also evaluated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci 2013  相似文献   

10.
The atom‐transfer radical polymerization (ATRP) of methyl methacrylate (MMA), using α,α′‐dichloroxylene as initiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst was successfully carried out under microwave irradiation (MI). The polymerization of MMA under MI showed linear first‐order rate plots, a linear increase of the number‐average molecular weight with conversion, and low polydispersities, which indicated that the ATRP of MMA was controlled. Using the same experimental conditions, the apparent rate constant (k) under MI (k = 7.6 × 10?4 s?1) was higher than that under conventional heating (k = 5.3 × 10?5 s?1). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2189–2195, 2004  相似文献   

11.
The thermal stability of the heterogeneous nucleation effect of polypropylene (PP) nucleated with an organic phosphate (A) and two kinds of sorbitol derivatives (B and D) was investigated by DSC multiscanning. For pure PP, the peak temperature of crystallization (T) was little changed with an increasing number of DSC scans, indicating that nucleation of PP is thermally stable. For the PP nucleated with an organic phosphate (PPA), the temperatures at the onset of crystallization (T) and at the completion of crystallization (T); the peak temperature of crystallization (T) and melting (T); and the heat of crystallization (ΔHc) and fusion (ΔHm) of PP are higher than those of pure PP and were little influenced with an increasing number of DSC scans. For PP nucleated with the sorbitol derivatives (PPB and PPD), the T, T, T, and T decreased with an increasing the number of scans. These results indicated that the thermal stability of heterogeneous nucleation effect of the nucleating agent A is higher than that of nucleating agents B and D. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1643–1650, 2002  相似文献   

12.
Poly(ethylene oxide) based electrolytes comprising LiCF3SO3 and calix[2]‐p‐benzo[4]pyrrole (CBP) as anion binder were prepared and subjected to DSC, ionic conductivity, cationic transport number and FTIR analyses. Symmetric cells of the type Li/PEO+LiCF3SO3+CBP/Li were assembled with these electrolytes and evolution of interfacial resistance as a function of time was analyzed. The cationic transference number, t, was found to increase from 0.23 to 0.78 on incorporation of CBP in the polymer electrolyte (PE). The incorporation of CBP as an anion trap does not enhance ionic conductivity below 60°C although it improves the interfacial properties. FTIR study revealed the formation of Li–C compounds on the lithium surface upon contact with the CBP added membranes. The CBP added PE was found to be optimal in terms of ionic conductivity and transport number, t, above 70°C, which were found to be higher for a system previously reported with calix[6]pyrrole. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The adsorption capacity of UO in the presence of Pb(II) and Cd(II) ions was investigated with amidoximated poly(glycidyl methacrylate) (PGMA) microbeads with an average size of 135 μm packed in a glass column (0.5‐cm i.d. and 20‐cm length, flow rate = 3 mL/min) under competitive conditions. A differential pulse polarography technique was used for the determination of trace quantities of uptaken elements by the measurement of the reduction peak currents at ?200/?950, ?400, and ?600 mV (vs a saturated calomel electrode) for UO, Pb(II), and Cd(II) ions, respectively. When only UO was found in the eluate, its adsorption was 85.3% from a 50 μM initial solution. However, when there was UO with binary systems of Pb(II) or Cd(II), it was 78.2 and 76.3%, respectively. On the other hand, in a ternary mixture of UO with Pb(II) and Cd(II), the adsorption was found to be 75.2% with the same initial concentration. According to the results, the competitive adsorption studies showed that these amidoximated PGMA microbeads had good adsorption selectivity for UO with the coexistence of Pb(II) and Cd(II) ions. The ionic strength of the solution also influenced the UO adsorption capacity of the amidoximated PGMA microbeads. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4168–4172, 2007  相似文献   

14.
Poly(3‐methylthiophene) (P3‐MeT) doped with different anions were prepared electrochemically in the presence of tetraalkylammonium salts. The new poly(3‐methylthiophene) SnCl and SbCl (P3‐MeT SnCl5 and P3‐MeT SbCl6) were prepared electrochemically using tetra‐n‐butylammonium pentachlorostannate and tetra‐n‐butylammonium hexachloroantimonate as the supporting electrolytes. The effect of current density, salt concentration, reaction temperature, and the nature of solvents on the polymer yield and polymer conductivities have been investigated. Cyclic voltammetry of poly(3‐methylthiophene) has been examined at platinum electrode in 1,2‐dichloroethane medium containing n‐Bu4NSnCl5, Bu4NSbCl6, and Bu4NClO4 as the supporting electrolytes in the range of −1.0 to 1.7 V versus SCE in the presence and absence of 3‐methylthiophene. Electrical conductivity, magnetic susceptibility measurements, and structural determination by elemental analysis and infrared studies were also made. Scanning electron microscopy revealed a globular, branched, fibrous and a spongy, fibrous morphology of poly(3‐methylthiophene) SnCl, ClO, and SbCl, respectively. The thermal analysis of the polymers was also investigated. Possible causes for the observed lower conductivity of these polymers have also been discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 91–102, 1999  相似文献   

15.
This article presents the liquid–solid mass transfer characteristics for cocurrent upflow operated gas–liquid solid foam packings. Aluminum foam was used with 10, 20, and 40 pores per linear inch (PPI), coated with 5 wt % Pd on γ‐alumina. The effects of gas velocity (ug = 0.1?0.8 m m s?1) and liquid velocity (ul = 0.02 and 0.04 m m s?1) are studied using the Pd/Bi catalyzed oxidation of glucose. The volumetric liquid–solid mass transfer coefficient, klsals, is approximately the same for 10 PPI and 20 PPI solid foams, ranging from 2 × 10?2 to 9 × 10?2 m m s?1. For 40 PPI solid foam, somewhat lower values for klsals were found, ranging from 6 × 10?3 to 4 × 10?2 m m s?1. The intrinsic liquid–solid mass transfer coefficient, kls, increases with increasing liquid velocity and was found to be proportional to u. Initially, kls decreases with increasing gas velocity and after reaching a minimum value increases with increasing gas velocity. The values for kls range from 5.5 × 10?6 to 8 × 10?4 m m s?1, which is in the same range as found for random packings and corrugated sheet packings. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

16.
Poly(N‐vinyl 2‐pyrrolidone) (PVP)/acrylonitrile (AN) interpenetrating polymer networks (IPNs) were synthesized and amidoximated for the purpose of uranyl ion adsorption. The adsorption of amidoximated IPNs was studied from different uranyl ion solutions (850, 1000, 1200, 1400, and 1600 ppm). The result of all our adsorption studies showed that the bonding between UO‐amidoxime groups complied with the Langmuir‐type isotherm. The adsorption capacity was found as 0.75 g UO/g dry amidoximated IPN. In order to increase the UO ion adsorption capacity the amidoximated IPN was treated with alkali, but no significant increase could be observed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2324–2329, 2001  相似文献   

17.
The effect of natural fibers (vetiver grass and rossells) on quiescent crystallization of polypropylene (PP) composites was analyzed in this study. Also, equilibrium melting temperature (T) of the composites was elucidated. Natural fiber‐PP composites showed lower T when compared to neat PP. Thermal analysis was performed via differential scanning calorimeter to study the crystallization kinetics. Natural fiber‐PP composites exhibited higher rate of crystallization than that of neat PP. Furthermore, spherulitic growth rate and transcrystallinity of the composites were investigated under a polarized light optical microscope. It was found that the growth rates of the composites were lower than that of neat PP. The spherulitic growth rates combined with the crystallization rates were used to calculate number of effective nuclei. It was shown that the number of effective nuclei of the composites was higher than that of neat PP. This suggested that natural fibers could act as a nucleating agent in the composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

18.
19.
Some new cellulosic materials, suitable for the adsorption of noble metal ions, were syn-thesized by chemical and electrochemical modification of cellulose. The polymerizable groups were introduced in cellulose with ∼ 80% yield of substitution by esterification with acryloyl chloride. The vinyl monomers (4-vinylpyridine, 1-vinylimidazole, 1-vinyl-2-pyrrolidinone, and 9-vinylcarbazole) were readily grafted into cellulose acrylate via radical polymerization in acetonitrile. The grafted copolymers of cellulose with 4-vinylpyridine and 4-vinylimidazole were reacted with methyl iodide and the corresponding 1-methylpyridinium iodide ( 6 ) and 3-methylimidazolium iodide ( 7 ) copolymers of cellulose were obtained. Copolymers 6 and 7 were transformed into new polymeric regents, differing in anions (ClO, CF3COO, NO, p-TsO, BF, PF) by using a supporting electrolyte carrying the desired anions through the ion-exchange-electrochemical oxidation of the released iodide at a controlled anodic potential. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The diazonium salts of aniline and 4,4′‐diaminodiphenylmethane coupled with phenol and resorcinol were condensed with formaldehyde in alkaline media to yield polymeric resins. These polymers were found to readily react with metal ions like Cu2+ and UO, forming polychelates. The azodyes, resins, and polychelates were characterized by several instrumental techniques such as elemental analysis, FTIR, 1H‐NMR, GPC, XRD, TG–DTG, and DSC studies. The chelating capacity of the resins toward Cu2+ and UO ions was studied by spectrophotometry. The extent of metal loading of the resins was studied by varying the time of contact, metal‐ion concentration, and pH of the reaction medium. The alkali and alkaline earth metal ions had little effect on the metal‐ion uptake behavior of the resins. The resin derived from the azodye of 4,4′‐diaminodiphenylmethane was found to be more efficient in removing the metal ions from solution than were the resins from aniline. The optimum conditions for effective separation of Cu2+ from UO were determined. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3128–3141, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号