首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imatinib is the first protein kinase inhibitor approved for clinical use and is a seminal drug for the concept of targeted therapy. Herein we report on the design, synthesis, photokinetic properties, and in vitro enzymatic evaluation of a photoactivatable caged prodrug of imatinib. This approach allows spatial and temporal control over the activation of imatinib triggered by ultraviolet light. The successful application of the photoactivation concept to this significant kinase inhibitor provides further evidence for the caging technique as a feasible approach in the kinase field. The presented photoactivatable imatinib prodrug will be highly useful as a pharmacological tool to study the impact of imatinib toward biological systems in greater detail.  相似文献   

2.
Chronic myeloid leukemia (CML) is a hematologic disorder characterized by the oncogene BCR-ABL1, which encodes an oncoprotein with tyrosine kinase activity. Imatinib, a BCR-ABL1 tyrosine kinase inhibitor, performs exceptionally well with minimal toxicity in CML chemotherapy. According to clinical trials, however, 20–30% of CML patients develop resistance to imatinib. Although the best studied resistance mechanisms are BCR-ABL1-dependent, P-glycoprotein (P-gp, a drug efflux transporter) may also contribute significantly. This study aimed to establish an imatinib-resistant human CML cell line, evaluate the role of P-gp in drug resistance, and assess the capacity of ketoconazole to reverse resistance by inhibiting P-gp. The following parameters were determined in both cell lines: cell viability (as the IC50) after exposure to imatinib and imatinib + ketoconazole, P-gp expression (by Western blot and immunofluorescence), the intracellular accumulation of a P-gp substrate (doxorubicin) by flow cytometry, and the percentage of apoptosis (by the Annexin method). In the highly resistant CML cell line obtained, P-gp was overexpressed, and the level of intracellular doxorubicin was low, representing high P-gp activity. Imatinib plus a non-toxic concentration of ketoconazole (10 μM) overcame drug resistance, inhibited P-gp overexpression and its efflux function, increased the intracellular accumulation of doxorubicin, and favored greater apoptosis of CML cells. P-gp contributes substantially to imatinib resistance in CML cells. Ketoconazole reversed CML cell resistance to imatinib by targeting P-gp-related pathways. The repurposing of ketoconazole for CML treatment will likely help patients resistant to imatinib.  相似文献   

3.
Docking simulations were used to predict the most favorable interaction between the T315I mutated form of Abl (invariably associated with resistance to the tyrosine kinase inhibitor imatinib mesylate, IM) and C6‐unsubstituted and substituted pyrazolo[3,4‐d]pyrimidines previously found to be dual Src/Abl inhibitors. Two C6‐unsubstituted ( 1 and 2 ) and eight C6‐substituted compounds ( 3 – 10 ) were selected and assayed for their effects on the Ba/F3 cell line transducing the wild‐type p210Bcr–Abl construct, which is IM‐sensitive, or three of the most common mutations associated with IM resistance in vivo (T315I, Y253F, and E255K), and driven to drug resistance by saturating doses of IL‐3 or by the expression of the Bcr–Abl construct coding for the p185 protein of acute lymphoblastic leukemia. Compounds 1 and 2 were active against all cell lines assayed (LD50 range: 0.7–4.3 μM ), whereas C6‐substituted compounds exhibited lower activity (LD50~8 μM for compound 3 toward the T315I mutant). Notably, 1 and 2 were also effective toward the T315I mutation, which is insensitive to dual Src/Abl inhibitors. The cytotoxic effects of 1 and 2 on IM‐sensitive and IM‐resistant Ba/F3 cells were attributable, at least in part, to their pro‐apoptotic activity. Taken together, such findings suggest that C6‐unsubstituted pyrazolo[3,4‐d]pyrimidines may represent useful inhibitors to target IM‐resistant chronic myeloid leukemia.  相似文献   

4.
Hematopoietic cell kinase (Hck) is a member of the Src family of non‐receptor protein tyrosine kinases. High levels of Hck are associated with drug resistance in chronic myeloid leukemia. Furthermore, Hck activity has been connected with HIV‐1. Herein, structure‐based drug design efforts were aimed at identifying novel Hck inhibitors. First, an in‐house library of pyrazolo[3,4‐d]pyrimidine derivatives, which were previously shown to be dual Abl and c‐Src inhibitors, was analyzed by docking studies within the ATP binding site of Hck to select the best candidates to be tested in a cell‐free assay. Next, the same computational protocol was applied to screen a database of commercially available compounds. As a result, most of the selected compounds were found active against Hck, with Ki values ranging from 0.14 to 18.4 μM , confirming the suitability of the computational approach adopted. Furthermore, selected compounds showed an interesting antiproliferative activity profile against the human leukemia cell line KU‐812, and one compound was found to block HIV‐1 replication at sub‐toxic concentrations.  相似文献   

5.
Kinases remain an important drug target class within the pharmaceutical industry; however, the rational design of kinase inhibitors is plagued by the complexity of gaining selectivity for a small number of proteins within a family of more than 500 related enzymes. Herein we show how a computational method for identifying the location and thermodynamic properties of water molecules within a protein binding site can yield insight into previously inexplicable selectivity and structure–activity relationships. Four kinase systems (Src family, Abl/c‐Kit, Syk/ZAP‐70, and CDK2/4) were investigated, and differences in predicted water molecule locations and energetics were able to explain the experimentally observed binding selectivity profiles. The successful predictions across the range of kinases studied here suggest that this methodology could be generally applicable for predicting selectivity profiles in related targets.  相似文献   

6.
A convenient synthesis of imatinib, a potent inhibitor of ABL1 kinase and widely prescribed drug for the treatment of a variety of leukemias, was devised and applied to the construction of a series of novel imatinib analogues featuring a number of non‐aromatic structural motifs in place of the parent molecule's phenyl moiety. These analogues were subsequently evaluated for their biopharmaceutical properties (e.g., ABL1 kinase inhibitory activity, cytotoxicity). The bicyclo[1.1.1]pentane‐ and cubane‐containing analogues were found to possess higher themodynamic solubility, whereas cubane‐ and cyclohexyl‐containing analogues exhibited the highest inhibitory activity against ABL1 kinase and the most potent cytotoxicity values against cancer cell lines K562 and SUP‐B15. Molecular modeling was employed to rationalize the weak activity of the compounds against ABL1 kinase, and it is likely that the observed cytotoxicity of these agents arises through off‐target effects.  相似文献   

7.
Naturally occurring cystine knot peptides show a wide range of biological activity, and as they have inherent stability they represent potential scaffolds for peptide‐based drug design and biomolecular engineering. Here we report the discovery, sequencing, chemical synthesis, three‐dimensional solution structure determination and bioactivity of the first cystine knot peptide from Cactaceae (cactus) family: Ep‐AMP1 from Echinopsis pachanoi. The structure of Ep‐AMP1 (35 amino acids) conforms to that of the inhibitor cystine knot (or knottin) family but represents a novel diverse sequence; its activity was more than 500 times higher against bacterial than against eukaryotic cells. Rapid bactericidal action and liposome leakage implicate membrane permeabilisation as the mechanism of action. Sequence homology places Ec‐AMP1 in the plant C6‐type of antimicrobial peptides, but the three dimensional structure is highly similar to that of a spider neurotoxin.  相似文献   

8.
G-protein-coupled receptors (GPCRs) form a large protein family that plays an important role in many physiological and pathophysiological processes. Since the sequencing of the human genome has revealed several hundred new members of this receptor family, many new opportunities for developing novel therapeutics have emerged. The increasing knowledge of GPCRs (biological target space) and their ligands (chemical ligand space) enables novel drug design strategies to accelerate the finding and optimization of GPCR leads: The crystal structure of rhodopsin provides the first three-dimensional GPCR information, which now supports homology modeling studies and structure-based drug design approaches within the GPCR target family. On the other hand, the classical ligand-based design approaches (for example, virtual screening, pharmacophore modeling, quantitative structure-activity relationship (QSAR)) are still powerful methods for lead finding and optimization. In addition, the cross-target analysis of GPCR ligands has revealed more and more common structural motifs and three-dimensional pharmacophores. Such GPCR privileged structural motifs have been successfully used by many pharmaceutical companies to design and synthesize combinatorial libraries, which are subsequently tested against novel GPCR targets for lead finding. In the near future structural biology and chemogenomics might allow the mapping of the ligand binding to the receptor. The linking of chemical and biological spaces will aid in generating lead-finding libraries, which are tailor-made for their respective receptor.  相似文献   

9.
N‐[2‐Methyl‐5‐(triazol‐1‐yl)phenyl]pyrimidin‐2‐amine derivatives were synthesized and evaluated in vitro for their potential use as inhibitors of Bcr‐Abl. The design is based on the bioisosterism between the 1,2,3‐triazole ring and the amide group. The synthesis involves a copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) as the key step, with the exclusive production of anti‐(1,4)‐triazole derivatives. One of the compounds obtained shows general activity similar to that of imatinib; in particular, it was observed to be more effective in decreasing the fundamental function of cdc25A phosphatases in the K‐562 cell line.  相似文献   

10.
Several small molecules that bind to the inactive DFG‐out conformation of tyrosine kinases (called type II inhibitors) have shown a good selectivity profile over other kinase targets. To obtain a set of DFG‐out structures, we performed an explicit solvent molecular dynamics (MD) simulation of the complex of the catalytic domain of a tyrosine kinase receptor, ephrin type‐A receptor 3 (EphA3), and a manually docked type II inhibitor. Automatic docking of four previously reported type II inhibitors was used to select a single snapshot from the MD trajectory for virtual screening. High‐throughput docking of a pharmacophore‐tailored library of 175 000 molecules resulted in about 4 million poses, which were further filtered by van der Waals efficiency and ranked according to a force‐field‐based energy function. Notably, around 20 % of the compounds with predicted binding energy smaller than ?10 kcal mol?1 are known type II inhibitors. Moreover, a series of 5‐(piperazine‐1‐yl)isoquinoline derivatives was identified as a novel class of low‐micromolar inhibitors of EphA3 and unphosphorylated Abelson tyrosine kinase (Abl1). The in silico predicted binding mode of the new inhibitors suggested a similar affinity to the gatekeeper mutant T315I of Abl1, which was verified in vitro by using a competition binding assay. Additional evidence for the type II binding mode was obtained by two 300 ns MD simulations of the complex between N‐(3‐chloro‐4‐(difluoromethoxy)phenyl)‐2‐(4‐(8‐nitroisoquinolin‐5‐yl)piperazin‐1‐yl)acetamide and EphA3.  相似文献   

11.
The design, synthesis, X-ray structural, and biological evaluation of a series of highly potent HIV-1 protease inhibitors are reported herein. These inhibitors incorporate novel cyclohexane-fused tricyclic bis-tetrahydrofuran as P2 ligands in combination with a variety of P1 and P2′ ligands. The inhibitor with a difluoromethylphenyl P1 ligand and a cyclopropylaminobenzothiazole P2′ ligand exhibited the most potent antiviral activity. Also, it maintained potent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The corresponding inhibitor with an enantiomeric ligand was significantly less potent in these antiviral assays. The new P2 ligands were synthesized in optically active form using enzymatic desymmetrization of meso-diols as the key step. To obtain molecular insight, two high-resolution X-ray structures of inhibitor-bound HIV-1 protease were determined and structural analyses have been highlighted.  相似文献   

12.
Bis-(2,3-dibromo-4,5-dihydroxy-phenyl)-methane (BDDPM) is a bromophenol first isolated from Rhodomelaceae confervoides. Our previous studies showed that BDDPM exerts PTP1B-inhibiting activity and anti-cancer activity against a wide range of tumor cells while it also showed lower cytotoxicity against normal cells. In the present study, we found that BDDPM exhibits significant activities toward angiogenesis in vitro. BDDPM inhibits multiple angiogenesis processes, including endothelial cell sprouting, migration, proliferation, and tube formation. Further kinase assays investigations found that BDDPM is a potent selective, but multi-target, receptor tyrosine kinase (RTKs) inhibitor. BDDPM (10 μM) inhibits the activities of fibroblast growth factor receptor 2 and 3 (FGFR2, 3), vascular endothelial growth factor receptor 2 (VEGFR2) and platelet-derived growth factor receptor α (PDGFRα) (inhibition rate: 57.7%, 78.6%, 78.5% and 71.1%, respectively). Moreover, BDDPM also decreases the phosphorylation of protein kinase B (PKB/Akt) and endothelial nitric oxide synthase (eNOS), as well as nitric oxide (NO) production in a dose dependent manner. These results indicate that BDDPM can be exploited as an anti-angiogenic drug, or as a lead compound for the development of novel multi-target RTKs inhibitors.  相似文献   

13.
14.
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a small molecule with potent anticancer activity. Like other 1,4-naphthoquinones, it exhibits electrophilic reactivity towards biological nucleophiles. We demonstrate that plumbagin and structurally related 1,4-naphthoquinones with at least one unsubstituted quinoid carbon (C2 or C3) bind to albumin, an ubiquitously present nucleophile, with minimum recovery of free drug. Extraction recovery of plumbagin from albumin in solution showed one-phase exponential decline with a half-live of 9.3 min at 10 μmol/L. In the presence of albumin, plumbagin exhibited instant changes in UV/Vis absorption bands. Electrochemical analysis using cyclic voltammetry showed a decrease in redox peak currents over time until electro-inactivity, thus suggesting the formation of a supramolecular adduct inaccessible for electron transfer. The adduct inhibited cell growth and caused cell-cycle arrest of prostate cancer cells, in part by decreasing levels of the cell-cycle regulator RBBP. The conjugate displayed similar cellular effects to those described for plumbagin, such as decreased levels of androgen receptor and protein kinase C epsilon. The effect of plumbagin-albumin on cancer cells was species-specific, suggesting a receptor-mediated mechanism. Furthermore, it was blocked by cathepsin inhibitor pepstatin A, indicating that lysosomal degradation is involved in the processing of plumbagin-albumin adduct. The spontaneously formed adduct of plumbagin with serum albumin is likely to mediate the biological activities of plumbagin in vivo and to fundamentally influence its pharmacodynamics.  相似文献   

15.
Imatinib, one of the most used therapeutic agents to treat leukemia, is an inhibitor that specifically blocks the activity of tyrosine kinases. The molecule of imatinib is flexible and contains several functional groups able to take part in H-bonding and hydrophobic interactions. Analysis of molecular conformations for this drug was carried out using density functional theory calculations of rotation potentials along single bonds and by analyzing crystal structures of imatinib-containing compounds taken from the Cambridge Structural Database and the Protein Data Bank. Rotation along the N-C bond in the region of the amide group was found to be the reason for two relatively stable molecular conformations, an extended and a folded one. The role of various types of intermolecular interactions in stabilization of the particular molecular conformation was studied in terms of (i) the likelihood of H-bond formation, and (ii) their contribution to the Voronoi molecular surface. It is shown that experimentally observed hydrogen bonds are in accord with the likelihood of their formation. The number of H-bonds in ligand-receptor complexes surpasses that in imatinib salts due to the large number of donors and acceptors of H-bonding within the binding pocket of tyrosine kinases. Contribution of hydrophilic intermolecular interactions to the Voronoi molecular surface is similar for both conformations, while π...π stacking is more typical for the folded conformation of imatinib.  相似文献   

16.
Tyrosine kinase inhibitors (TKIs), which have revolutionized cancer therapy over the past 15 years, are limited in their clinical application due to serious side effects. Therefore, we converted two approved TKIs (sunitinib and erlotinib) into 2‐nitroimidazole‐based hypoxia‐activatable prodrugs. Kinetics studies showed very different stabilities over 24 h; however, fast reductive activation via E. coli nitroreductase could be confirmed for both panels. The anticancer activity and signaling inhibition of the compounds against various human cancer cell lines were evaluated in cell culture. These data, together with molecular docking simulations, revealed distinct differences in the impact of structural modifications on drug binding to the enzymes: whereas the catalytic pocket of the epidermal growth factor receptor (EGFR) accepted all new erlotinib derivatives, the vascular endothelial growth factor receptor (VEGFR)‐inhibitory potential in the case of the sunitinib prodrugs was dramatically diminished by derivatization. In line, hypoxia dependency of ERK signaling inhibition was observed with the sunitinib prodrugs, while oxygen levels had no impact on the activity of the erlotinib derivatives. Overall, proof of principle could be shown for this concept, and the results obtained are an important basis for the future development of tyrosine kinase inhibitor prodrugs.  相似文献   

17.
Pactamycin is a bacteria‐derived aminocyclitol antibiotic with a wide‐range of biological activity. Its chemical structure and potent biological activities have made it an interesting lead compound for drug discovery and development. Despite its unusual chemical structure, many aspects of its formation in nature remain elusive. Using a combination of genetic inactivation and metabolic analysis, we investigated the tailoring processes of pactamycin biosynthesis in Streptomyces pactum. The results provide insights into the sequence of events during the tailoring steps of pactamycin biosynthesis and explain the unusual production of various pactamycin analogues by S. pactum mutants. We also identified two new pactamycin analogues that have better selectivity indexes than pactamycin against malarial parasites.  相似文献   

18.
Natural products discovered by using agnostic approaches, unlike rationally designed leads or those obtained through high‐throughput screening, offer the ability to reveal new biological pathways and, hence, serve as an important vehicle to unveil new avenues in drug discovery. The ritterazine–cephalostatin family of natural products displays robust and potent antitumor activities, with sub‐nanomolar growth inhibition against multiple cell lines and potent activity in xenograft models. Herein, we used comparative cellular and molecular biological methods to uncover the ritterazine–cephalostatin cytotoxic mode of action (MOA) in human tumor cells. Our findings indicated that, whereas ritterostatin GN1N, a cephalostatin–ritterazine hybrid, binds to multiple HSP70s, its cellular trafficking confines activity to the endoplasmic reticulum (ER)‐based HSP70 isoform, GRP78. This targeting results in activation of the unfolding protein response (UPR) and subsequent apoptotic cell death.  相似文献   

19.
A series of pyrazolo[3,4-d]pyrimidines, previously found to be Src inhibitors, was tested for their ability to inhibit proliferation of three Bcr-Abl-positive human leukemia cell lines (K-562, KU-812, and MEG-01), on the basis of the experimental evidence that various Src inhibitors are also active against Bcr-Abl kinase (the so called dual Src/Abl inhibitors). They reduce Bcr-Abl tyrosine phosphorylation and promote apoptosis of the Bcr-Abl-expressing cells. A cell-free enzymatic assay on isolated c-Abl confirmed that such compounds directly inhibit Abl activity. Finally, molecular modeling simulations were also performed to hypothesize the binding mode of the compounds into the Abl binding site.  相似文献   

20.
Many biological experiments are not compatible with the use of immunofluorescence, genetically encoded fluorescent tags, or FRET‐based reporters. Conjugation of existing kinase inhibitors to cell‐permeable fluorophores can provide a generalized approach to develop fluorescent probes of intracellular kinases. Here, we report the development of a small molecule probe of Src through conjugation of BODIPY to two well‐established dual Src‐Abl kinase inhibitors, dasatinib and saracatinib. We show that this approach is not successful for saracatinib but that dasatinib‐BODIPY largely retains the biological activity of its parent compound and can be used to monitor the presence of Src kinase in individual cells by flow cytometry. It can also be used to track the localization of Src by fixed and live‐cell fluorescence microscopy. This strategy could enable generation of additional kinase‐specific probes useful in systems not amenable to genetic manipulation or could be used together with fluorescent proteins to enable a multiplexed assay readout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号