首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid Fourier transformed infrared (FTIR) attenuated total reflectance (ATR) spectroscopic method was applied to the determination of water content (WC), total phenol amount (TP) and antioxidant activity (ABTS . +) of virgin olive oils (VOO) and olive oils. Calibration models were constructed using partial least squares regression. Oil samples with WC ranging from 289 to 1402 mg water/kg oil, with TP from 46 to 877 mg gallic acid/kg oil and with ABTS . + from 0 to 5.7 mmol Trolox/kg oil were considered for chemometric analysis. Better results were obtained when selecting suitable spectral ranges; in particular, from 2260 to 1008 cm?1 for WC, from 3610 to 816 cm?1 for TP and from 3707 to 1105 cm?1 for ABTS . +. Satisfactory LOD values by the FTIR‐chemometric methods were achieved: 9.4 (mg/kg oil) for WC; 12.5 (mg gallic acid/kg oil) for TP, and 0.76 (mmol Trolox/kg oil) for ABTS . +. The evaluation of the applicability of these analytical approaches was tested by use of validation sample sets (n = 16 for WC, n = 11 for TP and n = 14 for ABTS) with nearly quantitative recovery rates (99–114%). The FTIR–ATR method provided results that were comparable to conventional procedures. Practical applications : The presented method is based on ATR–FTIR in combination with multivariate calibration methodologies and permits a simultaneous evaluation of important quality parameters of VOO (WC, TP and ABTS . +). This approach represents an easy and convenient means for monitoring olive oil quality with the advantage of ease of operation, speed, no sample pretreatment and no consumption of solvents. The data obtained with this method are comparable to those obtained using the official reference method. Therefore, the technique is highly plausible as an alternative to the standard procedure for routine analysis or control at‐line of production processes.  相似文献   

2.
3.
Olive leaf‐olive oil preparations were obtained by vigorous mixing at various levels of addition (5, 10, 15%w/w) of new or mature leaves. After removal of the plant material via centrifugation, quality and sensory characteristics of the preparations were determined. Oxidative stability (120°C, 20 L/h) and DPPH radical scavenging were increased ~2–7 fold depending on the level of leaves used due to enrichment with polar phenols, mainly oleuropein, and a‐tocopherol. The extraction process affected the chlorophyll content and organoleptic traits as indicated by acceptability and preference tests (n = 50). Forty‐four % of the panelists identified a strong pungency in preparations with 15% w/w new leaves. Fifty‐four % of them identified a bitter taste in those with 15% w/w mature leaves, which was attributed to high levels of oleuropein (~200 mg/kg oil). Olive leaf‐olive oil preparations had interesting properties regarding antioxidants present that can attract the interest of a functional product market. Practical applications: The wider use of olive oil and derived products is highly desirable. In this sense, the current study presents data that support introduction to the market of a new specialty olive oil based solely on olive tree products (olive oil and leaves). Thus, in addition to olive oil and olive paste, a new product, that is an olive oil enriched with olive leaf antioxidants, especially oleuropein produced via a “green” technique (mechanical means instead of extraction with organic solvent) can be made available for consumers.  相似文献   

4.
The stripping treatment of extra virgin olive oil (EVOO) by nitrogen gas to remove dissolved oxygen (DO) was tested immediately after the oil production. Dissolved oxygen was measured before and after stripping, as well as one week later along with chemical analyses with the aim to assess the effects of the stripping treatment on EVOO quality. Stripping gave a great reduction of DO, of ca 50%. Both stripped (SO) and non‐stripped (non‐SO) oil samples showed a fast DO consumption up to zero in seven days. At this time, the non‐SO samples showed significant higher peroxide value probably as a consequence of the initial higher DO concentration that gives a greater formation of free radicals. A slightly lower concentration of total phenols was recorded for SO samples. A slight but significant decrease was recorded for only (E)‐hex‐2‐enal concentration within the volatile compounds.  相似文献   

5.
6.
7.
Several studies have suggested that the phenolic fraction plays an important role during storage and therefore in the shelf life of virgin olive oil. This investigation examines the effect of freezing olives (–18 °C) before processing into oil on the transfer of the phenolic compounds into the subsequent oil, and the consequential changes in oxidative stability. Oil samples obtained from frozen olives (24 h at –18 °C), crushed with and without preliminary thawing, were compared to a control sample; both oils were obtained using a two‐phase low‐scale mill. The oxidative stability in different samples was assessed in terms of primary and secondary oxidation products as measured by peroxide values and oxidative stability index times, respectively. The quality of the oil samples was also checked through the percentage of free acidity and the phenolic content. Phenols were determined by both spectrophotometric assays (total phenols and o‐diphenols) and HPLC‐DAD/MSD. The antiradical capacity of the phenolic fraction was determined by DPPH and ABTS spectrophotometric tests. These analyses showed that thawing of olives before oil extraction led to a significant loss of oxidative stability and phenols; in contrast, samples obtained from frozen olives that were not thawed before crushing showed qualitative characteristics similar to control samples.  相似文献   

8.
9.
In the present study, the probability of packaged olive oil not reaching the end of its shelf life, P safe, was used as a quality factor to evaluate the time taken for olive oils stored at various conditions to reach the end of their shelf lives. P safe was used to comment on the activation energy required during the degradation process per actual or simulated case, and hexanal was used as the main quality-related indicator. Based on the month after bottling at which P safe reached 70%, the activation energy of an “equivalent” chemical reaction, representative of overall quality degradation, was calculated for several storage conditions. Using the differences between activation energies estimated using the above method, we found the most important factors influencing the shelf life of the packaged olive oil to be the initial storage period in the dark, the role of elevated temperatures, and the presence of light, either continuous or in alternating patterns, in association with the packaging materials used in this study. These results were in qualitative agreement with previously reported experimental observations and simulations, indicating the validity of using P safe, and of activation energies calculated from it, to predict the shelf life of packaged olive oil.  相似文献   

10.
A rapid direct Fourier transform infrared (FTIR) spectroscopic method using a 100 μ BaF2 transmission cell was developed for the determination of free fatty acid (FFA) in crude palm oil (CPO) and refined-bleached-deodorized (RBD) palm olein, covering an analytical range of 3.0–6.5% and 0.07–0.6% FFA, respectively. The samples were prepared by hydrolyzing oil with enzyme in an incubator. The optimal calibration models were constructed based on partial least squares (PLS) analysis using the FTIR carboxyl region (C=O) from 1722 to 1690 cm−1. The resulting PLS calibrations were linear over the range tested. The standard errors of calibration (SEC) obtained were 0.08% FFA for CPO with correlation coefficient (R 2) of 0.992 and 0.01% FFA for RBD palm olein with R 2 of 0.994. The standard errors of performance (SEP) were 0.04% FFA for CPO with R 2 of 0.998 and 0.006% FFA for RBD palm olein with R 2 of 0.998, respectively. In terms of reproducibility (r) and accuracy (a), both FTIR and chemical methods showed comparable results. Because of its simpler and more rapid analysis, which is less than 2 min per sample, as well as the minimum use of solvents and labor, FTIR has an advantage over the wet chemical method.  相似文献   

11.
In conventional reverse osmosis processes for seawater desalination, a disinfection of the process stream with chlorine compounds is carried out for antifouling. After disinfection the reduction agent Na2S2O5 is used for the removal of residual chlorine in a strongly overstoichiometric way in order to protect the membranes from oxidational damages. To save chemicals a controlled dosing of Na2S2O5 based on a reliable concentration measurement is desirable. Therefore, a measuring method for the determination of the sulfur(IV) components bisulfite and sulfite in seawater is developed based on the combination of UV spectroscopy and a PLS regression method. Experimental results as well as the development of the regression model for sulfur species in ultrapure and seawater is described.  相似文献   

12.
13.
The tested tocopherols (γ,δ,α) showed antioxidative activity at all levels of addition to the monounsaturated olive oil, the effects increased as a function of concentrations (maximum: +287% with 800 mg γ‐tocopherol/100 g oil compared to the control oil). In the highly unsaturated linseed oil, which contains 58 mg/100 g initial concentration of γ‐tocopherol, γ‐tocopherol showed antioxidative behavior up to the addition of 100 mg/ 100 g oil. Additions of more than the 100 mg/100 g affected the oil, resulting in a faster oxidation. Mixtures of γ/δ‐tocopherols in olive oil were found to protect more efficiently than both vitamins when added separately α‐tocopherol reduced effects of other tocopherols in both plant oils. The stabilizing effect of added tocopherols and their mixtures (100 mg/100 g oil each) in olive oil are γ/δ‐T>γ‐T>δ‐T>γ/α‐T>δ/α‐T>α‐T and in linseed oil γ‐T>γ/δ‐T>δ‐T>γ/α‐T>α‐T>α/δ‐T.  相似文献   

14.
15.
Biodiesel (FA esters) has become very attractive as an alternative diesel fuel owing to its environmental benefits. Transesterification is the most usual and important method to make biodiesel from vegetable oils. This article investigates the potential for using Raman spectroscopy to monitor and quantify the transesterification of soybean oil to yield ethyl esters. The differences observed in the Raman spectra of soybean oil after transesterification were a peak at 2932 cm−1 ( ), the displacement of the v C=O band from 1748 to 1739 cm−1, and the bands at 861 (v R-C=O and v C-C) and 372 cm−1 (δ CO-O-C). Uni- and multivariate analysis methods were used to build several analytical curves and then applied in known samples, treated as unknowns, to test their ability to predict concentrations. The best results were achieved by Raman/PLS calibration models (where PLS=partial least squares regression) using an internal normalization standard (v =C-H band). The correlation coefficient (R 2) values so obtained were 0.9985 for calibration and 0.9977 for validation. Univariate regression analysis between biodiesel concentration and the increasing intensity of band or v C=O displacement showed R 2 values of 0.9983 and 0.9742, respectively. Although spectroscopic methods are less sensitive than chromatographic ones, the data obtained by spectroscopy can be correlated with other techniques, allowing biodiesel yield and quality to be quickly assessed.  相似文献   

16.
One of the main challenges that virgin olive oil producers face today is an accurate prediction of the sensory quality of the final product prior to the milling of the olives. The possibility that olive paste aroma can be used as a predictive measurement of virgin olive oil quality is studied in this paper. The study was centered on distinguishing the aroma of olive pastes that produced virgin olive oils without sensory defects from the aroma of olive pastes the virgin olive oils of which showed sensory defects. Olive pastes were analyzed by solid‐phase microextraction‐gas chromatography and a sensor system based on metal oxide sensors. Forty‐four volatile compounds were identified in olive pastes, all of them being also present in virgin olive oil. Six volatile compounds – acetic acid, octane, methyl benzene, (E)‐2‐hexenal, hexyl acetate and 3‐methyl‐1‐butanol – distinguished both kinds of pastes with only five misclassified samples. Five metal oxide sensors were able to classify the olive pastes with only two erroneous classifications.  相似文献   

17.
In the last years, metallic crushers substituted granite stone mill with some variations in the organoleptic oil characteristics. To control the influence of the crushing method on the yield and oil quality, the olive pastes were obtained using three different ways: (i) new metallic crusher at mobile knives; (ii) granite stone mill; (iii) double olive crushing by the metallic crusher and the granite stone mill. With the aim to ascertain the useful use of a new metallic crusher (at mobile knives), experimental tests were carried out in an industrial oil mill. This oil mill is equipped by a centrifugal decanter generating two oil flows: first and second extraction (recovery) oils. The results showed that the yields obtained by different methods were satisfactory. No statistically significant differences have been observed in terms of oil yield and quality when different crushing devices were used. All first extracted oils are extra virgin with similar organoleptic characteristics, especially for the fruity intensity and for the bitter and pungent taste, as confirmed by the composition of volatile substances and the content of phenolic oil compounds. The recovery oils (second extraction oils) showed, in contrast to first extraction oils, a more intense green colour and a higher content of total phenols. Practical applications: Processing of sound olives with the right ripening grade and good quality allows to easily obtain an extra virgin olive oil, with commercial qualitative parameters according to the European Union requirements. However, different olive crushing systems affect the concentrations of some compounds responsible of aroma and taste (phenolic compounds). The use of the more violent metallic crushers facilitates obtaining oils with total phenol content higher than when using a stone mill. Here we used a particular metallic crusher (at knives) that, however, is suitable to replace the granite stone mill when a less pungent and bitter oil is required.  相似文献   

18.
A simple, rapid, and direct FTIR spectroscopic method was developed for the determination of BHT content in refined, bleached, and deodorized (RBD) palm olein and RBD palm oil. The method used sodium chloride windows with a 50-mm transmission path. Fifty stripped oil samples of both RBD palm olein and RBD palm oil were spiked with known amounts of BHT concentrations up to 300 mg/kg (ppm). The data were separated into two sets for calibration and validation using partial least squares models. FTIR results for both oils correlated well with results obtained by the IUPAC HPLC-based method. For RBD palm olein, the coefficient of determination (R 2) was 0.9907 and the SE of calibration (SEC) was 8.47 ppm. For RBD palm oil, an R 2 of 0.9848 and an SEC of 10.73 ppm were achieved. Because of the significant decrease in analysis time and reduction in solvent usage, this FTIR method for BHT is especially well suited for routine quality control applications in the palm oil industry.  相似文献   

19.
20.
This study proposes an accelerated test performed at mild temperature (40–60 °C) to measure oxidative stability and estimate the potential shelf life of extra‐virgin olive oil (EVOO). The kinetic behavior of normalized oxidation indices (PV, K232 and K270) and the oxidizing substrate [unsaturated fatty acids (UFA)] during storage of different virgin olive oil samples in darkness and at different temperatures (25–60 °C) is reported for the first time. PV and K232 followed an apparent pseudo zero‐order kinetics (R2 >0.951) at all the experimental temperatures in all samples, whereas the evolution of K270 apparently better fitted a pseudo first‐order kinetics (R2 >0.926). The temperature‐dependent kinetics of the oxidation indices and the UFA were well described by the linear Arrhenius equation between 25 and 60 °C (0.960< R2 <0.999, p <0.05). The best correlation between loss of PUFA and increase of oxidation product indices was K232 (0.581< R2 <0.924). The time required to reach the upper limits for PV, K232 and K270 established for the EVOO category in the current EU legislation correlated well with temperature using a potential equation, making it possible to set up an accelerated stability test at temperatures below 60 °C to estimate the potential shelf life under normal storage temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号