首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to better understand the performance of binary blends of biodegradable aliphatic polyesters to overcome some limitations of the pure polymers (e.g., brittleness, low stiffness, and low toughness). Binary blends of poly(ε‐caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared by melt blending (in a twin‐screw extruder) followed by injection molding. The compositions ranged from pure biodegradable polymers to 25 wt % increments. Morphological characterization was performed with scanning electron microscopy and differential scanning calorimetry. The initial modulus, stress and strain at yield, strain at break, and impact toughness of the biodegradable polymer blends were investigated. The properties were described by models assuming different interfacial behaviors (e.g., good adhesion and no adhesion between the dissimilar materials). The results indicated that PCL behaved as a polymeric plasticizer to PLA and improved the flexibility and ductility of the blends, giving the blends higher impact toughness. The strain at break was effectively improved by the addition of PCL to PLA, and this was followed by a decrease in the stress at break. The two biodegradable polymers were proved to be immiscible but nevertheless showed some degree of adhesion between the two phases. This was also quantified by the mechanical property prediction models, which, in conjunction with material property characterization, allowed unambiguous detection of the interfacial behavior of the polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
In this research work, biocomposites based on a ternary system containing softwood Kraft lignin (Indulin AT), poly‐L ‐lactic acid (PLLA) and polyethylene glycol (PEG) have been developed. Two binary systems based on PLLA/PEG and PLLA/lignin have also been studied to understand the role of plasticizer (i.e., PEG) and filler (i.e., lignin) on the overall physicomechanical behavior of PLLA. All samples have been prepared by melt‐blending. A novel approach has also been introduced to improve the compatibility between PLLA and PEG by using a transesterification catalyst under reactive‐mixing conditions. In PEG plasticized PLLA flexibility increases with increasing content of PEG and no significant effect of the molecular weight of PEG on the flexibility of PLLA has been observed. Differential scanning calorimetry and size‐exclusion chromatography along with FTIR analysis show the formation of PLLA‐b‐PEG copolymer for high temperature processed PLLA/PEG systems. On the other hand, binary systems containing lignin show higher stiffness than PLLA/PEG system and good adhesion between the particles and the matrix has been observed by scanning electron microscopy. However, a concomitant good balance in stiffness introduced by the lignin particles and flexibility introduced by PEG has been observed in the ternary systems. This study also showed that high temperature reactive melt‐blending of PLLA/PEG leads to the formation of a segmented PLLA‐b‐PEG block copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
A two‐step process was developed to prepare nanocrystalline cellulose (NCC) reinforced poly(lactic acid) (PLA) nanocomposites using polyethylene glycol (PEG) as a compatibilizer. It was composed of solvent mixing and melt blending. The NCC was well dispersed in the PLA matrix. A network was formed at high NCC‐to‐PEG ratio at which the amount of the PEG was not enough to cover all the surfaces of the NCC. The formation of the network was confirmed by the occurrence of a plateau for the storage modulus at low frequency. The incorporation of the PEG and NCC could improve the crystallinity of the PLA. The elongation at break increased from 11.0% for the neat PLA to 106.0% for the composites including 6 wt % NCC, impact strength was improved from 0.864 to 2.64 kJ m?2 and tensile strength did not change significantly for the same 6 wt % NCC composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44683.  相似文献   

4.
Protein‐loaded multifilament fibers were fabricated by the wet‐spinning method. The polymers which were tested included poly(L,D ‐lactide) [P(L,D )LA], L/D ratio 96/4 and poly(L,DL ‐lactide) [P(L,DL )LA], L /DL ratio 70/30. The polymers were dissolved in dichloromethane and bovine serum albumin (BSA) was dissolved in water, respectively. The solutions were mixed together using a probe sonicator to form a polymer‐protein emulsion. This emulsion was extruded to an ethanol spin bath. The fibers possessed a distinct sheath‐core structure, where the inner core was porous and the outer sheath was smooth. The diameters of the filaments were in the range of 46 and 70 μm. The tenacity values of the filaments were between 7 and 17 MPa. In vitro drug release rate of the P(L,DL )LA 70/30 filament was faster than that of the P(L,D )LA 96/4 filament. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Acetyl tri‐n‐butyl citrate (ATBC) and poly(ethyleneglycol)s (PEGs) with different molecular weights (from 400 to 10000) were used in this study to plasticize poly(L‐lactic acid) (PLA). The thermal and mechanical properties of the plasticized polymer are reported. Both ATBC and PEG are effective in lowering the glass transition (Tg) of PLA up to a given concentration, where the plasticizer reaches its solubility limit in the polymer (50 wt % in the case of ATBC; 15–30 wt %, depending on molecular weight, in the case of PEG). The range of applicability of PEGs as PLA plasticizers is given in terms of PEG molecular weight and concentration. The mechanical properties of plasticized PLA change with increasing plasticizer concentration. In all PLA/plasticizer systems investigated, when the blend Tg approaches room temperature, a stepwise change in the mechanical properties of the system is observed. The elongation at break drastically increases, whereas tensile strength and modulus decrease. This behavior occurs at a plasticizer concentration that depends on the Tg‐depressing efficiency of the plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1731–1738, 2003  相似文献   

6.
The most promising representative of biodegradable plastics in packaging applications is polylactide (PLA). Despite this, there is only a small market of PLA in Europe. Reasons for that are the high price of PLA raw material and the lack of knowledge of the behavior in packaging applications. It has a number of peculiarities so producers of plastics packaging hesitate to use it. Like other polyesters, it can degrade at increased temperatures in the presence of moisture by hydrolysis whereby it loses its physical and chemical properties. In all production processes, production waste is generated (i.e., stamping grids or edge trim). In most cases, this waste is used. It is not known in detail, how an internal recycling process will influence the final product properties. One problem is hydrolysis by which the production waste is partially degraded. Target of this study is to analyze the recycling process of PLA within the context of necessary process adaptions and the effects upon ecological efficiency. Films for packaging containing multiple types and amounts of production waste will be produced by extrusion and tested concerning their mechanical properties. The analysis of the recycling behavior showed that internal PLA production waste is well suitable for recycling. The influence of the recycling on the molecular weight is negligible. The effect on the viscosity and thus on the extrusion process is higher. Packaging relevant properties like mechanical or optical properties are hardly influenced. Especially recycling with a recycling quota of up to 50% has an insignificant effect on the film properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41532.  相似文献   

7.
In this work, preparation and properties of biocomposites based on jute fibers and blend of plasticized starch and poly(β‐hydroxybutyrate) (PHB) have been investigated. Different amounts of glycerol and aliphatic polyesters (PHB) have been added to native starch to obtain a processable biodegradable matrix. In the same way natural jute fibers up to 30 wt % loading were added to improve the mechanical and thermal stability of the material. Tensile mechanical, thermal, and thermomecahnical analyses have been performed to characterize the ensuing materials. Significant enhancement in the mechanical properties and water sensitivity were noted by the addition of 8 wt % PHB. The fibers incorporation into the biopolymer matrix brings about an increase in both the mechanical strength and modulus as much higher as the fibers loading is important. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
This article presents the results of a study of the processing and physicomechanical properties of environmentally friendly wood‐fiber‐reinforced poly(lactic acid) composites that were produced with a microcompounding molding system. Wood‐fiber‐reinforced polypropylene composites were also processed under similar conditions and were compared to wood‐fiber‐reinforced poly(lactic acid) composites. The mechanical, thermomechanical, and morphological properties of these composites were studied. In terms of the mechanical properties, the wood‐fiber‐reinforced poly(lactic acid) composites were comparable to conventional polypropylene‐based thermoplastic composites. The mechanical properties of the wood‐fiber‐reinforced poly(lactic acid) composites were significantly higher than those of the virgin resin. The flexural modulus (8.9 GPa) of the wood‐fiber‐reinforced poly(lactic acid) composite (30 wt % fiber) was comparable to that of traditional (i.e., wood‐fiber‐reinforced polypropylene) composites (3.4 GPa). The incorporation of the wood fibers into poly(lactic acid) resulted in a considerable increase in the storage modulus (stiffness) of the resin. The addition of the maleated polypropylene coupling agent improved the mechanical properties of the composites. Microstructure studies using scanning electron microscopy indicated significant interfacial bonding between the matrix and the wood fibers. The specific performance evidenced by the wood‐fiber‐reinforced poly(lactic acid) composites may hint at potential applications in, for example, the automotive and packaging industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4856–4869, 2006  相似文献   

9.
Chain extension of poly(L ‐lactic acid) (PLLA) with unsaturated groups (PLBM) was attempted using benzoyl peroxide (BPO) and the resulting variation in molecular weight and mechanical properties was explored. Bulk copolymerization of L ‐lactic acid (LA)/1,4‐butanediol (BD)/maleic acid (MA) (100/1/1) isomerized some of the cis‐structured maleate units into trans‐structured fumarate units. The optically active LA promoted isomerization during the condensation polymerization. Chain extension of PLBM with BPO did not bring about a discernible increase in the molecular weight when the chain extension was carried out in various solvents with different radical abstraction abilities. In contrast, the hot pressing of PLBM containing BPO increased the molecular weight and sometimes produced chloroform‐insoluble gels depending on the BPO concentration and temperature. The chain extension at low temperatures increased the flexibility of PLBM considerably. However, PLBM lost the flexibility precipitously as the chain‐extension temperature increased above 120°C. The biodegradation rate of PLBM was much slower than that of PLLA. The biodegradation rate was further lowered by the chain extension. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1802–1807, 2003  相似文献   

10.
Poly(lactic acid) (PLA) is a biodegradable aliphatic polyester, but its brittleness makes it unsuitable for many packaging and appliance applications. The goal of the work reported was to create novel poly(ester urethane)s that incorporate biodegradable poly(lactic acid) diols (PLA‐OHs) and good mechanical properties of increased molecular weight via crosslinked network formation for engineering plastics applications. Three kinds of polyols (PLA‐OHs, PLA‐OHs/poly(tetramethylene ether) glycol or PLA‐OHs/poly(butylene adipate) glycol (PBA)) and two kinds of diisocyanates (4,4‐diphenylmethane diisocyanate (MDI) or toluene 2,4‐diisocyanate (TDI)) were chosen for the soft and hard segments to compare their mechanical properties. In addition, 1,4‐butanediol and trimethylolpropane were each used as chain extender agents. Results showed the PLA/PBA‐polyurethanes (PLA/PBA‐PUs) of the MDI series and the PLA/PBA‐PUs of the TDI series had improved thermal stability and enhanced mechanical properties. Degradation behavior showed the PLA‐based polyurethanes could be degraded in phosphate‐buffered saline solution and enzyme solution. © 2012 Society of Chemical Industry  相似文献   

11.
Poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends were prepared via a melt‐blending process with or without the addition of a 3‐aminopropyl triethoxysilane (APTES) compatibilizer at different dosages. The addition of the compatibilizer showed improved compatibility between TPU and PLA; this led to an enhanced dispersion of TPU within the PLA matrix. With the addition of 1‐phr APTES, the crystallization behavior did not vary much, but this exacerbated the formation of a second melting temperature for PLA at higher temperature. However, the addition of 5‐phr APTES into the PLA/TPU blends depressed the crystallization temperature and resulted in a melting temperature depression phenomena with the disappearance of the second melting peak because of the lubricated effect of low‐molecular‐weight species of APTES. The addition of a low dosage of APTES improved the impact strength further from 29.2 ± 1.4 to 40.7 ± 2.7 J/m but with a limited improvement in the tensile properties; this indicated that a higher dispersion of the dispersed phase did not always improve all of the mechanical properties because of the low‐molecular‐weight nature of the compatibilizer used. The physical properties of the added modifier needed to be considered as well. A low dosage of APTES (1 phr) also increased the viscosity because of the improved interaction between TPU and PLA at all of the investigated shear rate regions, but a higher dosage of compatibilizer induced another plasticizing effect to reduce the viscosity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42322.  相似文献   

12.
In this study, poly(lactic acid) (PLA) films were coated by an ink formulation containing nanoclay dispersed with ultrasonic homogenization for 20 min. Mechanical and barrier properties of the coated films were evaluated according to clay type and concentration. PLA films coated by ink formulations containing Cloisite 30B displayed the best mechanical and barrier properties in six types of nanoclays. PLA films coated by Cloisite 30B‐containing ink varying in clay concentration were investigated. Tensile strength and elongation at break of these coated films were improved in 1% Cloisite 30B. Oxygen permeability decreased significantly upon the addition of clay levels up to 1% and slightly decreased with further increases in the amount of the clay. The value of water vapor permeability also decreased depending on the increases of clay (0%–20%). When the clay content in the sample was 2.0%, the surface of coated PLA films displayed aggregation visible using film emission scanning electron microscopy. X‐ray diffractometry and transmission electron microscopy indicated that a mixture of exfoliated and intercalated structure was formed with addition of 1% (w/w) Cloisite 30B to the ink after ultrasonication. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
以左旋乳酸(L?LA)和乙醇酸(GA)为原料,利用一步法熔融共聚合成聚(乳酸?乙醇酸)(PLLGA)共聚物,通过差示扫描量热仪(DSC)对共聚物薄膜的结晶性能进行了表征,并利用Avrami方程对其进行了等温结晶动力学研究,通过万能拉伸试验机和压差法气体透过仪对共聚物薄膜的力学性能和气体阻隔性能进行测试。结果表明,PLLGA共聚物薄膜中GA的引入对材料结晶性能有较大影响,在GA含量为4 %(摩尔分数,下同)的PLLGA中,GA表现为成核剂作用,共聚物结晶比纯聚左旋乳酸(PLLA)薄膜快,半结晶时间减少;而在GA含量为8 %的PLLGA中,GA则表现出限制分子链运动的作用,破坏共聚物分子间的规整度,导致材料结晶性能大幅度降低,处于非晶态;随着GA含量的增加,PLLGA薄膜的拉伸强度和弹性模量逐步下降,而断裂伸长率大幅度增加,GA含量为8 %的PLLGA的断裂伸长率达到了130.1 %,是纯PLLA薄膜的21.3倍;同时,PLLGA薄膜的气体阻隔性显著增加,5 ℃时,相比于纯PLLA薄膜,GA含量为8 %的PLLGA薄膜的O2、CO2、N2透过量分别降低了47 %、41 %和39 %。  相似文献   

14.
Poly(lactic acid), PLA, composites containing 0, 1, 3, and 5 wt % zeolite type 4A were prepared using extrusion/injection compounding techniques. Morphological characterizations were carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Physical properties were evaluated by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) and mechanical properties by standard tensile testing. The morphological studies showed a homogenous dispersion of zeolite particles within the PLA matrix. As the fracture stress propagated, zeolite particles remained embedded into the matrix, indicating the existence of good interfacial adhesion between zeolite particles and the PLA matrix. The improvement in the interfacial adhesion was also confirmed by applying Nicolais‐Narkis and Pukanszky models. The percent crystallinity of the PLA and the temperature‐ dependant elastic and viscous modulus of the composite increased with the proportion of zeolites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A poly(L ‐lactic acid) (PLLA)/poly(D ‐lactic acid) (PDLA) stereocomplex was prepared from an equimolar mixture of commercial‐grade PLLA and PDLA by melt processing for the first time. Crosslinked samples were obtained by the radiation‐induced crosslinking of the poly(lactic acid) (PLA) stereocomplex mixed with triallyl isocyanurate (TAIC). The PLA stereocomplex and its crosslinked samples were characterized by their gel behavior, thermal and mechanical measurements, and enzymatic degradation. The crosslinking density of the crosslinked stereocomplex was described as the gel fraction, which increased with the TAIC content and radiation dose. The maximum crosslinking density was obtained in crosslinked samples of PLA/3% TAIC and PLA/5% TAIC irradiated at doses higher than 30 kGy. The stable crosslinking networks that formed in the irradiated PLA/TAIC substantially suppressed the segmental mobility for the crystallization of single crystals as well as stereocomplex crystals. The crosslinking network also significantly improved the mechanical properties and inhibited the enzymatic degradation of crosslinked PLA/3% TAIC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

16.
Biodegradable polymer blends of poly(butylene succinate) (PBS) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) were prepared with different compositions. The mechanical properties of the blends were studied through tensile testing and dynamic mechanical thermal analysis. The dependence of the elastic modulus and strength data on the blend composition was modeled on the basis of the equivalent box model. The fitting parameters indicated complete immiscibility between PBS and PHBV and a moderate adhesion level between them. The immiscibility of the parent phases was also evidenced by scanning electron observation of the prepared blends. The thermal properties of the blends were studied through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed an enhancement of the crystallization behavior of PBS after it was blended with PHBV, whereas the thermal stability of PBS was reduced in the blends, as shown by the TGA thermograms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42815.  相似文献   

17.
The goal of this work was to prepare exfoliated poly(lactic acid) (PLA)/layered‐silicate nanocomposites with maleic anhydride grafted poly(lactic acid) (PLA–MA) as a compatibilizer. Two different layered silicates were used in the study: bentonite and hectorite. The nanocomposites were prepared by the incorporation of each layered silicate (5 wt %) into PLA via solution casting. X‐ray diffraction of the prepared nanocomposites indicated exfoliation of the silicates. However, micrographs from transmission electron microscopy showed the presence of intercalated and partially exfoliated areas. Tensile testing showed improvements in both the tensile modulus and yield strength for all the prepared nanocomposites. The results from the dynamic mechanical thermal analysis showed an improvement in the storage modulus over the entire temperature range for both layered silicates together with a shift in the tan δ peak to higher temperatures. The effect of using PLA–MA differed between the two layered silicates because of a difference in the organic treatment. The bentonite layered silicate showed a more distinct improvement in exfoliation and an increase in the mechanical properties because of the addition of PLA–MA in comparison with the hectorite layered silicate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1852–1862, 2006  相似文献   

18.
Composites based on carbon nanostructures (CNS) and poly(ε‐caprolactone) (PCL) were produced by solvent casting technique. Single‐walled carbon nanotubes (SWCNTs) and carbon nanofibers (CNFs) were selected, to produce composite films with enhanced properties. The role of CNS type and percentage were investigated in terms of morphological, thermal, mechanical, and dielectrical properties. Composite morphological analysis reveals a good dispersion of CNS, at low and high content. Thermal properties underline the nucleation effect of CNS on PCL polymer matrix. Reinforcing effects in terms of increased tensile modulus were obtained with both nanofillers, but a higher reduction of the ductility was shown in PCL/CNF materials. A higher efficiency to form a conductive network, assessed by AC conductivity, was observed for SWCNTs at concentration lower than 1 wt. % © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The detrimental effect of cell adhesion on polymer surfaces has been a limiting factor in the medical deployment of many implants. We examined the potential to decrease cell proliferation while simultaneously increasing mechanical performance through Zn–Al layered double hydroxide (LDH) organically modified with ibuprofen dispersed in poly(L ‐lactic acid) (PLLA). These composites are commonly referred to as nanocomposites. The thermophysical and mechanical properties of the hybrids were studied with wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing. The WAXD and TEM results indicated that intercalated and exfoliated nanocomposites were obtained. The storage modulus, tensile modulus, and ultimate tensile strength were improved. The LDH affected the cold crystallization and reduced the thermal stability of the neat PLLA. Smooth muscle cells were used for in vitro studies of the nanocomposites. It was found that the hybrids reduced cell proliferation, and the amount of cell reduction was related to ibuprofen release. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Poly(propylene carbonate) (PPC), a CO2‐based bioplastic and poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) were melt blended followed by injection molding. Fourier transform infrared spectroscopy detected an interaction between the macromolecules from the reduction in the OH peak and a shift in the C?O peak. The onset degradation temperature of the polymer blends was improved by 5% and 19% in comparison to PHBV and PPC, respectively. Blending PPC with PHBV reduced the melting and crystallization temperatures and crystallinity of the latter as observed through differential scanning calorimetry. The amorphous nature of PPC affected the thermal properties of PHBV by hindering the spherulitic growth and diluting the crystalline region. Scanning electron micrographs presented a uniform dispersion and morphology of the blends, which lead to balanced mechanical properties. Incorporating PHBV, a stiff semi‐crystalline polymer improved the dimensional stability of PPC by restricting the motion of its polymer chains. © 2016 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44420.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号