首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AS Leal  R Wang  JA Salvador  Y Jing 《ChemMedChem》2012,7(9):1635-1646
A series of ursolic acid ((1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)‐10‐hydroxy‐1,2,6a,6b,9,9,12a‐heptamethyl‐2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b‐tetradecahydro‐1H‐picene‐4a‐carboxylic acid) derivatives with a 12‐fluoro‐13,28β‐lactone moiety were synthesized using the electrophilic fluorination reagent Selectfluor. The antiproliferative effects of these novel compounds were evaluated in AsPC‐1 pancreatic cancer cells, and the structure–activity relationships (SARs) were evaluated. Of the compounds synthesized, ursolic acid derivatives carrying a heterocyclic ring, such as imidazole or methylimidazole, and cyanoenones were among the more potent inhibitors of AsPC‐1 pancreatic cancer cell growth. 2‐Cyano‐3‐oxo‐12α‐fluoro‐urs‐1‐en‐13,28β‐olide, compound 20 , was the most effective inhibitor with IC50 values of 0.7, 0.9 and 1.8 μM in pancreatic cancer cell lines AsPC‐1, MIA PaCa‐2 and PANC‐1, respectively. This compound also exhibited better antiproliferative activities against breast (MCF7), prostate (PC‐3), hepatocellular (Hep G2) and lung (A549) cancer cell lines, with IC50 values lower than 1 μM . The mechanism of action by which these compounds exert their biological effect was evaluated in AsPC‐1 cells using the most potent inhibitor synthesized, compound 20 . At 1 μM , the cell cycle arrested at the G1 phase with upregulation of p21waf1. Apoptosis was induced at an inhibitor concentration of 8 μM with upregulation of NOXA and downregulation of c‐FLIP. These data indicate that fluorolactone derivatives of ursolic acid have improved antiproliferative activity, acting through arrest of the cell cycle and induction of apoptosis.  相似文献   

2.
Significant antiproliferative effects against various tumor cell lines were observed with novel ampicillin salts as ionic liquids. The combination of anionic ampicillin with appropriate ammonium, imidazolium, phosphonium, and pyridinium cations yielded active pharmaceutical ingredient ionic liquids (API‐ILs) that show potent antiproliferative activities against five different human cancer cell lines: T47D (breast), PC3 (prostate), HepG2 (liver), MG63 (osteosarcoma), and RKO (colon). Some API‐ILs showed IC50 values between 5 and 42 nM , activities that stand in dramatic contrast to the negligible cytotoxic activity level shown by the ampicillin sodium salt. Moreover, very low cytotoxicity against two primary cell lines—skin (SF) and gingival fibroblasts (GF)—indicates that the majority of these API‐ILs are nontoxic to normal human cell lines. The most promising combination of antitumor activity and low toxicity toward healthy cells was observed for the 1‐hydroxyethyl‐3‐methylimidazolium–ampicillin pair ([C2OHMIM][Amp]), making this the most suitable lead API‐IL for future studies.  相似文献   

3.
The potent antitumor activity of 1‐O‐hexadecyl‐2‐O‐methyl‐3‐O‐(2′‐amino‐2′‐deoxy‐β‐D ‐glucopyranosyl)‐sn‐glycerol ( 1 ) was previously shown to arise through an apoptosis‐independent pathway. Here, a systematic structure–activity study in which the effects of the anomeric linkage, the cationic charge and the glycero moiety on the antitumor activity is described. Eight analogues of 1 were synthesized, and their antitumor activity against breast (JIMT1 and BT549), pancreas (MiaPaCa2) and prostate (DU145, PC3) cancer was determined. 1‐O‐Hexadecyl‐2‐O‐methyl‐3‐O‐(2′‐amino‐2′‐deoxy‐α‐D ‐glucopyranosyl)‐sn‐glycerol ( 2 ) consistently displayed the most potent activity against all five cell lines with CC50 values in the range of 6–10 μM . However, replacement of the O‐glycosidic linkage by a thioglycosidic linkage or replacement of the amino group by an azide or guanidino group leads to a threefold or greater decrease in potency. The glycero moiety also contributes to the overall activity of 1 and 2 but its effects are of lesser importance. Investigation into the mode of action of this class of compounds revealed that, in agreement with previous findings, the cytotoxic effects arise through induction of large acid vacuoles.  相似文献   

4.
The syntheses and antiproliferative activities of novel substituted tetrahydroisoquinoline derivatives and their sulfamates are discussed. Biasing of conformational populations through substitution on the tetrahydroisoquinoline core at C1 and C3 has a profound effect on the antiproliferative activity against various cancer cell lines. The C3 methyl‐substituted sulfamate (±)‐7‐methoxy‐2‐(3‐methoxybenzyl)‐3‐methyl‐6‐sulfamoyloxy‐1,2,3,4‐tetrahydroisoquinoline ( 6 b ), for example, was found to be ~10‐fold more potent than the corresponding non‐methylated compound 7‐methoxy‐2‐(3‐methoxybenzyl)‐6‐sulfamoyloxy‐1,2,3,4‐tetrahydroisoquinoline ( 4 b ) against DU‐145 prostate cancer cells (GI50 values: 220 nM and 2.1 μM , respectively). Such compounds were also found to be active against a drug‐resistant MCF breast cancer cell line. The position and nature of substitution of the N‐benzyl group in the C3‐substituted series was found to have a significant effect on activity. Whereas C1 methylation has little effect on activity, introduction of C1 phenyl and C3‐gem‐dimethyl substituents greatly decreases antiproliferative activity. The ability of these compounds to inhibit microtubule polymerisation and to bind tubulin in a competitive manner versus colchicine confirms the mechanism of action. The therapeutic potential of a representative compound was confirmed in an in vivo multiple myeloma xenograft study.  相似文献   

5.
Noscapine is a phthalideisoquinoline alkaloid isolated from the opium poppy Papaver somniferum. It has long been used as an antitussive agent, but has more recently been found to possess microtubule‐modulating properties and anticancer activity. Herein we report the synthesis and pharmacological evaluation of a series of 6′‐substituted noscapine derivatives. To underpin this structure–activity study, an efficient synthesis of N‐nornoscapine and its subsequent reduction to the cyclic ether derivative of N‐nornoscapine was developed. Reaction of the latter with a range of alkyl halides, acid chlorides, isocyanates, thioisocyanates, and chloroformate reagents resulted in the formation of the corresponding N‐alkyl, N‐acyl, N‐carbamoyl, N‐thiocarbamoyl, and N‐carbamate derivatives, respectively. The ability of these compounds to inhibit cell proliferation was assessed in cell‐cycle cytotoxicity assays using prostate cancer (PC3), breast cancer (MCF‐7), and colon cancer (Caco‐2) cell lines. Compounds that showed activity in the cell‐cycle assay were further evaluated in cell viability assays using PC3 and MCF‐7 cells.  相似文献   

6.
Phenolic acids possess many beneficial biological activities, including antioxidant and anti-inflammatory properties. Unfortunately, their low bioavailability restricts their potential medical uses, as it limits the concentration of phenolic acids achievable in the organism. The conjugation with phospholipids constitutes one of the most effective strategies to enhance compounds bioavailability in biological systems. In the present study, the conjugates of anisic (ANISA) and veratric acid (VA) with phosphatidylcholine (PC) were investigated. Since both ANISA and VA are inhibitors of tyrosinase, a melanocyte enzyme, the expression of which increases during tumorigenesis, anticancer potential of the conjugates was tested in several metastatic melanoma cell lines. The conjugates proved to be antiproliferative, apoptosis-inducing and cell-cycle-affecting agents, selective for cancerous cells and not affecting normal fibroblasts. The conjugates substituted by ANISA and VA, respectively, at both the sn-1 and sn-2 positions of PC, appeared the most promising, since they were effective against the vast majority of metastatic melanoma cell lines. Additionally, the conjugation of phenolic acids to PC increased their antioxidant activity. Molecular modeling was employed for the first time to estimate the features of the investigated conjugates relevant to their anticancer properties and membrane permeation. Again, the conjugates substituted by phenolic acid at both the sn-1 and sn-2 positions of PC seemed to be presumably most bioavailable.  相似文献   

7.
Two series of racemic goniothalamin analogues displaying nitrogen-containing groups were designed and synthesized. A total of 19 novel analogues were evaluated against a panel of four different cancer cell lines, along with the normal prostate cell line PNT2 to determine their selectivity. Among them, goniothalamin chloroacrylamide 13 e displayed the lowest IC50 values for both MCF-7 (0.5 μm ) and PC3 (0.3 μm ) cells, about 26-fold more potent than goniothalamin ( 1 ). Besides its higher potency, compound 13 e also displayed much higher selectivity than goniothalamin. In contrast, goniothalamin isobutyramide 13 c was the most potent analogue against Caco-2 cells (IC50=0.8 μm ), about 10-fold more potent and 17-fold more selective than 1 . These results reveal the potential of compounds 13 c and 13 e for further in vivo studies, representing the first goniothalamin analogues with IC50 values in the low micromolar range and high selectivity against MCF-7, Caco-2, and PC3 cancer cell lines.  相似文献   

8.
Many phospholipase Ds (PLDs) are known to catalyze transphosphatidylation as well as hydrolysis of phospholipids. Transphosphatidylation of lysoplasmalogen (LyPls)‐specific phospholipase D (LyPls‐PLD), which catalyzes hydrolysis of ether lysophospholipids such as LyPls and 1‐hexadecyl‐2‐hydroxy‐sn‐glycero‐3‐phosphocholine (Lyso‐PAF), still remains unclear. This study aims to reveal the transphosphatidylation activity of LyPls‐PLD, that is, the production of cyclic ether lysophospholipid. The enzymatic reaction is conducted in a buffer system, and the reaction products of a novel LyPls‐PLD from Thermocrispum sp. are investigated using mass spectrometry (MS). MS analyses demonstrate the reaction products to consist of 100% 1‐hexadecyl‐2‐hydroxy‐sn‐glycero‐2,3‐cyclic‐phosphate (cLyPA) and choline from Lyso‐PAF; however, 1‐alkenyl‐2‐hydroxy‐sn‐glycero‐2,3‐cyclic‐phosphate from 1‐O‐1′‐(Z)‐octadecenyl‐2‐hydroxy‐sn‐glycero‐3‐phosphocholine and 1‐O‐1′‐(Z)‐octadecenyl‐2‐hydroxy‐sn‐glycero‐3‐phosphoethanolamine is not produced. These results are expected to help in elucidating the catalytic mechanism of LyPls‐PLD, that is, the rate‐limiting step, and indicate LyPls‐PLD to be useful for the one‐pot synthesis of cLyPA. Practical Applications: A novel phospholipase D, LyPls‐PLD, can exclusively synthesize cLyPA from Lyso‐PAF using a one‐step enzymatic reaction without an organic solvent. cLyPA could be expected to show bioactivities similar to those of cyclic phosphatidic acid, which promotes normal cell differentiation, hyaluronic acid synthesis, antiproliferative activity in fibroblasts, and inhibitory activity toward cancer cell invasion and metastasis.  相似文献   

9.
Several 2‐anilino‐3‐aroylquinolines were designed, synthesized, and screened for their cytotoxic activity against five human cancer cell lines: HeLa, DU‐145, A549, MDA‐MB‐231, and MCF‐7. Their IC50 values ranged from 0.77 to 23.6 μm . Among the series, compounds 7 f [(4‐fluorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] and 7 g [(4‐chlorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] showed remarkable antiproliferative activity against human lung cancer and prostate cancer cell lines. The IC50 values for inhibiting tubulin polymerization were 2.24 and 2.10 μm for compounds 7 f and 7 g , respectively, and were much lower than that of the reference compound E7010 [N‐(2‐(4‐hydroxyphenylamino)pyridin‐3‐yl)‐4‐methoxybenzenesulfonamide]. Furthermore, flow cytometric analysis revealed that these compounds arrest the cell cycle at the G2/M phase, leading to apoptosis. Apoptosis was also confirmed by mitochondrial membrane potential, Annexin V–FITC assay, and intracellular ROS generation. Immunohistochemistry, western blot, and tubulin polymerization assays showed that these compounds disrupt tubulin polymerization. Molecular docking studies revealed that these compounds bind efficiently to β‐tubulin at the colchicine binding site.  相似文献   

10.
Heterometallic titanocene-based compounds containing gold(I)-phosphane fragments have been extremely successful against renal cancer in vitro and in vivo. The exchange of phosphane by N-heterocyclic carbene ligands to improve or modulate their pharmacological profile afforded bimetallic complexes effective against prostate cancer, but less effective against renal cancer in vitro. Herein we report the synthesis of new bimetallic Ti–Au compounds by the incorporation of two previously reported highly active gold(I)-N-heterocyclic carbene fragments derived from 4,5-diarylimidazoles. The two new compounds [(η5-C5H5)2TiMe(μ-mba)Au(NHC)] (where NHC=1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene, NHC-Bn 2 a ; or 1,3-diethyl-4,5-diphenylimidazol-2-ylidene, NHC-Et 2 b ) with the dual linker (-OC(O)-p-C6H4-S-) containing both a carboxylate and a thiolate group were evaluated in vitro against renal and prostate cancer cell lines. The compounds were found to be more cytotoxic than previously described Ti–Au compounds containing non-optimized gold(I)-N-heterocyclic fragments. We present studies to evaluate their effects on cell death pathways, migration, inhibition of thioredoxin reductase (TrxR) and vascular endothelial growth factor (VEGF) in the PC3 prostate cancer cell line. The results show that the incorporation of a second metallic fragment such as titanocene into biologically active gold(I) compounds improves their pharmacological profile.  相似文献   

11.
Herein we describe a class of unconventional nucleosides (methyloxynucleosides) that combine unconventional nucleobases such as substituted aminopyrimidines, aminopurines, or aminotriazines with unusual sugars in their structures. The allitollyl or altritollyl derivatives were pursued as ribonucleoside mimics, whereas the tetrahydrofuran analogues were pursued as their dideoxynucleoside analogues. The compounds showed poor, if any, activity against a broad range of RNA and DNA viruses, including human immunodeficiency virus (HIV). This inactivity may be due to lack of an efficient metabolic conversion into their corresponding 5′‐triphosphates and poor affinity for their target enzymes (DNA/RNA polymerases). Several compounds showed cytostatic activity against proliferating human CD4+ T‐lymphocyte CEM cells and against several other tumor cell lines, including murine leukemia L1210 and human prostate PC3, kidney CAKI‐1, and cervical carcinoma HeLa cells. A few compounds were inhibitory to Moloney murine sarcoma virus (MSV) in C3H/3T3 cell cultures, with the 2,6‐diaminotri‐O‐benzyl‐D ‐allitolyl‐ and ‐D ‐altritolyl pyrimidine analogues being the most potent among them. This series of unconventional nucleosides may represent a novel family of potential antiproliferative agents.  相似文献   

12.
Iron chelation therapy has been recognized as a promising antitumor therapeutic strategy. Herein we report a novel theranostic agent for targeted iron chelation therapy and near‐infrared (NIR) optical imaging of cancers. The theranostic agent was prepared by incorporation of a polyaminocarboxylate‐based cytotoxic chelating agent (N‐NE3TA; 7‐[2‐[(carboxymethyl)amino]ethyl]‐1,4,7‐triazacyclononane‐1,4‐diacetic acid) and a NIR fluorescent cyanine dye (Cy5.5) onto a tumor‐targeting transferrin (Tf). The N‐NE3TA–Tf conjugate (without Cy5.5) was characterized and evaluated for antiproliferative activity in HeLa, HT29, and PC3 cancer cells, which have elevated expression levels of the transferrin receptor (TfR). The N‐NE3TA–Tf conjugate displayed significant inhibitory activity against all three cancer cell lines. The NIR dye Cy5.5 was then incorporated into N‐NE3TA–Tf, and the resulting cytotoxic and fluorescent transferrin conjugate N‐NE3TA–Tf–Cy5.5 was shown by microscopy to enter TfR‐overexpressing cancer cells. This theranostic conjugate has potential application for dual use in targeted iron chelation cancer therapy and NIR fluorescence imaging.  相似文献   

13.
Three sets of isatin-based Schiff bases were synthesized utilizing the molecular hybridization approach. Some of the synthesized Schiff bases show significant to moderate antiproliferative properties against MCF7 (breast), HCT116 (colon), and PaCa2 (pancreatic) cancer cell lines with potency compared to reference drugs 5-fluorouracil (5-FU) and Sunitinib. Among all, compound 17 f (3-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)-1-((1-(2-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylindolin-2-one) exhibits promising antiproliferative properties against the MCF7 cancer cell line with 2.1-fold more potency than Sunitinib. However, among all the synthesized compounds, three (5-methylisatin derivatives) were the most effective against HCT116 in comparison to 5-FU. Compound 17 f exhibited the highest anti-angiogenic effect on the vasculature as it significantly reduced BV from 43 mm to 2 mm in comparison to 5.7 mm for Sunitinib and flow cytometry supports the arrest of the cell cycle at G1/S phases. In addition, compound 17 f also showed high VEGFR-2 inhibition properties against breast cancer cell lines. Robust 2D-QSAR studies supported the biological data.  相似文献   

14.
Most anticancer drugs target mitosis as the most crucial and fragile period of rapidly dividing cancer cells. However the limitations of classical chemotherapeutics drive the search for new more effective and selective compounds. For this purpose structural modifications of the previously characterized pyridine analogue (S1) were incorporated aiming to obtain an antimitotic inhibitor of satisfactory and specific anticancer activity. Structure-activity relationship analysis of the compounds against a panel of cancer cell lines allowed to select a compound with a thiophene ring at C5 of a 3,4-dihydropyridine-2(1H)-thione (S22) with promising antiproliferative activity (IC50 equal 1.71 ± 0.58 µM) and selectivity (SI = 21.09) against melanoma A375 cells. Moreover, all three of the most active compounds from the antiproliferative study, namely S1, S19 and S22 showed better selectivity against A375 cells than reference drug, suggesting their possible lower toxicity and wider therapeutic index. As further study revealed, selected compounds inhibited tubulin polymerization via colchicine binding site in dose dependent manner, leading to aberrant mitotic spindle formation, cell cycle arrest and apoptosis. Summarizing, the current study showed that among obtained mitotic-specific inhibitors analogue with thiophene ring showed the highest antiproliferative activity and selectivity against cancer cells.  相似文献   

15.
A series of chalcone conjugates featuring the imidazo[2,1‐b]thiazole scaffold was designed, synthesized, and evaluated for their cytotoxic activity against five human cancer cell lines (MCF‐7, A549, HeLa, DU‐145 and HT‐29). These new hybrid molecules have shown promising cytotoxic activity with IC50 values ranging from 0.64 to 30.9 μM . Among them, (E)‐3‐(6‐(4‐fluorophenyl)‐2,3‐bis(4‐methoxyphenyl)imidazo[2,1‐b]thiazol‐5‐yl)‐1‐(pyridin‐2‐yl)prop‐2‐en‐1‐one ( 11 x ) showed potent antiproliferative activity with IC50 values ranging from 0.64 to 1.44 μM in all tested cell lines. To investigate the mechanism of action, the detailed biological aspects of this promising conjugate ( 11 x ) were carried out on the A549 lung cancer cell line. The tubulin polymerization assay and immunofluoresence analysis results suggest that this conjugate effectively inhibits microtubule assembly in A549 cells. Flow cytometric analysis revealed that this conjugate induces cell‐cycle arrest in the G2/M phase and leads to apoptotic cell death. This was further confirmed by Hoechst staining, activation of caspase‐3, DNA fragmentation analysis, and Annexin V–FITC assay. Moreover, molecular docking studies indicated that this conjugate ( 11 x) interacts and binds efficiently with the tubulin protein.  相似文献   

16.
Natural products containing the α,β‐unsaturated δ‐lactone skeleton have been shown to possess a variety of biological activities. The natural product (?)‐tarchonanthuslactone ( 1 ) possessing this privileged scaffold is a popular synthetic target, but its biological activity remains underexplored. Herein, the total syntheses of dihydropyran‐2‐ones modeled on the structure of 1 were undertaken. These compounds were obtained in overall yields of 17–21 % based on the Keck asymmetric allylation reaction and were evaluated in vitro against eight different cultured human tumor cell lines. We further conducted initial investigation into the mechanism of action of selected analogues. Dihydropyran‐2‐one 8 [(S,E)‐(6‐oxo‐3,6‐dihydro‐2H‐pyran‐2‐yl)methyl 3‐(3,4‐dihydroxyphenyl)acrylate], a simplified analogue of (?)‐tarchonanthuslactone ( 1 ) bearing an additional electrophilic site and a catechol system, was the most cytotoxic and selective compound against six of the eight cancer cell lines analyzed, including the pancreatic cancer cell line. Preliminary studies on the mechanism of action of compound 8 on pancreatic cancer demonstrated that apoptotic cell death takes place mediated by an increase in the level of reactive oxygen species. It appears as though compound 8 , possessing two Michael acceptors and a catechol system, may be a promising scaffold for the selective killing of cancer cells, and thus, it deserves further investigation to determine its potential for cancer therapy.  相似文献   

17.
Previously, we reported the identification of a thiazolidinedione‐based adenosine monophosphate activated protein kinase (AMPK) activator, compound 1 (N‐[4‐({3‐[(1‐methylcyclohexyl)methyl]‐2,4‐dioxothiazolidin‐5‐ylidene}methyl)phenyl]‐4‐nitro‐3‐(trifluoromethyl)benzenesulfonamide), which provided a proof of concept to delineate the intricate role of AMPK in regulating oncogenic signaling pathways associated with cell proliferation and epithelial–mesenchymal transition (EMT) in cancer cells. In this study, we used 1 as a scaffold to conduct lead optimization, which generated a series of derivatives. Analysis of the antiproliferative and AMPK‐activating activities of individual derivatives revealed a distinct structure–activity relationship and identified 59 (N‐(3‐nitrophenyl)‐N′‐{4‐[(3‐{[3,5‐bis(trifluoromethyl)phenyl]methyl}‐2,4‐dioxothiazolidin‐5‐ylidene)methyl]phenyl}urea) as the optimal agent. Relative to 1 , compound 59 exhibits multifold higher potency in upregulating AMPK phosphorylation in various cell lines irrespective of their liver kinase B1 (LKB1) functional status, accompanied by parallel changes in the phosphorylation/expression levels of p70S6K, Akt, Foxo3a, and EMT‐associated markers. Consistent with its predicted activity against tumors with activated Akt status, orally administered 59 was efficacious in suppressing the growth of phosphatase and tensin homologue (PTEN)‐null PC‐3 xenograft tumors in nude mice. Together, these findings suggest that 59 has clinical value in therapeutic strategies for PTEN‐negative cancer and warrants continued investigation in this regard.  相似文献   

18.
Many new chemotherapeutic agents are under preclinical investigation and, despite efforts to more selectively target cancer cells, limitations such as toxicity and inherent resistance are often encountered. Therefore, alternative strategies are needed to treat cancer and overcome such limitations. We describe novel cyclohexylpiperazine derivatives, designed as mixed affinity ligands for sigma (σ) receptors and human Δ8–Δ7 sterol isomerase (HSI) ligands, which also exhibit P‐glycoprotein (P‐gp) inhibitory activity, with the aim of exploiting the antiproliferative effects mediated by σ and HSI sites while overcoming P‐gp‐mediated resistance. All of the compounds displayed high affinities for σ receptors and HSI sites, P‐gp inhibitory activity, and σ2 receptor agonist antiproliferative activity. Antiproliferative activity was also tested in PC‐3 cells to establish σ1 and HSI contribution. Compound cis‐ 11 , which displayed the best antiproliferative and P‐gp inhibitory activities, was co‐administered with 0.1 μM doxorubicin in MDCK‐MDR1 cells. Compound cis‐ 11 caused 70 % and 90 % cell death when co‐administered at 30 μM and 50 μm, respectively. When administered alone, cis‐ 11 resulted in 50 % cell death, demonstrating its single agent antitumor properties in a tumor cell line overexpressing P‐gp.  相似文献   

19.
Herein we report the discovery of compound 6 [KST016366; 4‐((2‐(3‐(4‐((4‐ethylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl)ureido)benzo[d]thiazol‐6‐yl)oxy)picolinamide] as a new potent multikinase inhibitor through minor structural modification of our previously reported RAF kinase inhibitor A . In vitro anticancer evaluation of 6 showed substantial broad‐spectrum antiproliferative activity against 60 human cancer cell lines. In particular, it showed GI50 values of 51.4 and 19 nm against leukemia K‐562 and colon carcinoma KM12 cell lines, respectively. Kinase screening of compound 6 revealed its nanomolar‐level inhibitory activity of certain oncogenic kinases implicated in both tumorigenesis and angiogenesis. Interestingly, 6 displays IC50 values of 0.82, 3.81, and 53 nm toward Tie2, TrkA, and ABL‐1 (wild‐type and T315I mutant) kinases, respectively. Moreover, 6 is orally bioavailable with a favorable in vivo pharmacokinetic profile. Compound 6 may serve as a promising candidate for further development of potent anticancer chemotherapeutics.  相似文献   

20.
Noscapine, a phthalideisoquinoline alkaloid derived from Papaver somniferum, is a well‐known antitussive drug that has a relatively safe in vitro toxicity profile. Noscapine is also known to possess weak anticancer efficacy, and since its discovery, efforts have been made to design derivatives with improved potency. Herein, the synthesis of a series of noscapine analogues, which have been modified in the 6′, 9′, 1 and 7‐positions, is described. In a previous study, replacement of the naturally occurring N‐methyl group in the 6′‐position with an N‐ethylaminocarbonyl was shown to promote cell‐cycle arrest and cytotoxicity against three cancer cell lines. Here, this modification has been combined with other structural changes that have previously been shown to improve anticancer activity, namely halo substitution in the 9′‐position, regioselective O‐demethylation to reveal a free phenol in the 7‐position, and reduction of the lactone to the corresponding cyclic ether in the 1‐position. The incorporation of new aryl substituents in the 9′‐position was also investigated. The study identified interesting new compounds able to induce G2/M cell‐cycle arrest and that possess cytotoxic activity against the human prostate carcinoma cell line PC3, the human breast adenocarcinoma cell line MCF‐7, and the human pancreatic epithelioid carcinoma cell line PANC‐1. In particular, the ethyl urea cyclic ether noscapinoids and a compound containing a 6′‐ethylaminocarbonyl along with 9′‐chloro, 7‐hydroxy and lactone moieties exhibited the most promising biological activities, with EC50 values in the low micromolar range against all three cancer cell lines, and these derivatives warrant further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号