首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a substitute of isotactic polypropylene in applications requiring excellent fracture resistance, impact‐resistant polypropylene copolymer (IPC) has attracted much attention in recent years. In this study, a highly effective β‐form nucleating agent (β‐NA; an aryl amide compound) was introduced into IPC, and our attention was focused on the nonisothermal crystallization and subsequent melting behaviors of the nucleated samples. The nonisothermal crystallization behaviors were investigated on the basis of the different cooling rates and different concentrations of β‐NA with differential scanning calorimetry, wide‐angle X‐ray diffraction (WAXD), and polarized optical microscopy. The results show that both the cooling rate and concentration of β‐NA greatly determined the nonisothermal crystallization process and subsequent multiple melting behaviors. Further results show that the multiple melting behaviors were related to the transition in β crystallites and those between the β and α crystallites. The morphologies of the dispersed particles and the supermolecular structure of the matrix were characterized with scanning electron microscopy. Finally, the effect of the β‐NA concentration on the fracture resistance of IPC was evaluated by measurement of the notched Izod impact strength. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Interfacial agents are often used to compatibilize immiscible polymer blends. They are known to reduce the interfacial tension, homogenize the morphology, and improve adhesion between phases. In this study, two diblock copolymers of styrene/ethylene‐propylene (SEP), which have different molecular weights, were used to compatibilize a blend of syndiotactic polystyrene (sPS) 75% and ethylene‐propylene rubber (EPR) 25% so as to extend the applications of sPS as incoming thermoplastics. The morphological analysis and emulsification curve, which relates the average size of the dispersion particles to the concentration of diblock copolymers added, was used to investigate the efficiency of the interfacial agents on the blend morphology. A notched izod impact test and a tensile test were also performed to determine the compatibilization effect of different molecular weight copolymers on the mechanical properties of the blends and to establish links between morphology and mechanical properties. Results suggest that the lower molecular weight diblock copolymer showed an effective emulsifying capacity for sPS/ERP immiscible blend in morphology and mechanical properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3618–3626, 2004  相似文献   

3.
Fibers colored with quinacridone pigment spun at low take‐up velocities were obtained. The spun fibers, with a very high β‐form content, were drawn at room temperature and at a temperature of 120°C at different draw ratios. They were then heat stabilized at different temperatures, ranging from 140 to 150°C for different time intervals. As a result of drawing, the transition from β to mesophase, as well as that from β to α, was observed. The β to mesophase transition results from cold drawing at room temperature, while the β to α transition results from drawing at 120°C. In both cases, the significant decrease of β‐form content occurs at the low draw ratio of 2. At higher draw ratios, the β‐form content gradually decreases, and at a draw ratio of 7 the β‐form disappears altogether. As a result of heat stabilization, the β to α transformation was observed. The first change of the β‐form content was noticed at 140°C. For fibers stabilized at temperatures above 140°C, the decrease of the β‐form content is more significant and increases with the increase of the stabilization temperature. At 150°C, a rapid drop of the β‐form content occurs after only 3 min, and after a few more minutes the β‐form disappears. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1413–1418, 2004  相似文献   

4.
Crystallization elution fractionation (CEF) is the newest crystallization-based technique for estimating the chemical composition distribution of ethylene/1-olefin copolymers. Understanding the separation mechanism of CEF for ethylene/propylene copolymers over their full compositional range is challenging because the crystallizabilities of the copolymer chains depend on the longest ethylene sequence and on longest isotactic propylene sequence. We developed a mathematical model to describe the CEF mechanism for ethylene/propylene copolymers over the entire compositional range using population balances for the crystallization and dissolution stages. The joint distribution of longest ethylene and isotactic propylene sequences determines how the copolymer populations crystallize and dissolve. The model was validated with experimental CEF profiles of ethylene/propylene copolymers varying from pure ethylene to propylene homopolymers.  相似文献   

5.
丙烯/1-丁烯无规共聚树脂等温结晶动力学研究   总被引:2,自引:0,他引:2  
采用本体聚合方法合成了丙烯/1-丁烯无规共聚树脂,通过DSC研究了丙烯/1-丁烯无规共聚物的等温结晶动力学。根据Avrami方程求出了各个结晶温度下的结晶动力学参数K(T)、 n、t1/2,以及样品的结晶活化能。结果表明,随着结晶温度的升高,同一样品的结晶速率逐渐下降,说明样品的结晶是依热成核控制为主;Avrami指数 在3~4之间,表明共聚物晶体的生长方式为三维球状生长。在同一结晶温度条件下,随着共聚物中1-丁烯单元含量的增加,晶体的成核和结晶速率均下降,结晶活化能增加,共聚物中1-丁烯单元含量对结晶速率的影响很大。  相似文献   

6.
The reactive compatibilization of syndiotactic polystyrene (sPS)/oxazoline‐styrene copolymer (RPS)/maleic anhydride grafted ethylene‐propylene copolymer (EPR‐MA) blends is investigated in this study. First, the miscibility of sPS/RPS blends is examined by thermal analysis. The cold crystallization peak (Tcc) moved toward higher temperature with increased PRS, and, concerning enthalpy relaxation behaviors, only a single enthalpy relation peak was found in all aged samples. These results indicate that the sPS/RPS blend is miscible along the various compositions and RPS can be used in the reactive compatibilization of sPS/RPS/EPR‐MA blends. The reactive compatibilized sPS/RPS/EPR‐MA blends showed finer morphology than sPS/EPR‐MA physical blends and higher storage modulus (G') and complex viscosity (η*) when RPS contents were increased. Moreover, the impact strength of sPS/RPS/EPR‐MA increased significantly compared to sPS/EPR‐MA blend, and SEM micrographs after impact testing show that the sPS/RPS/EPR‐MA blend has better adhesion between the sPS matrix and the dispersed EPR‐MA phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2084–2091, 2002  相似文献   

7.
In this study, the crystallization behavior of the β‐isotactic polypropylene (β‐iPP) samples nucleated by a rare earth based β‐nucleating agent (β‐NA) WBG‐II and a metal salts compound β‐NA NAB83 (denoted as WPP and NPP, respectively) under different cooling conditions were comparatively investigated. The thermal conditions such as the cooling rate, isothermal crystallization temperature, isothermal crystallization time, and the subsequent cooling to room temperature. The results of WAXD, SEM, and nonisothermal crystallization reveal that under the same processing conditions, the crystallite size of NPP is smaller, which arrange more compactly as compared with WPP. Meanwhile, NPP has shorter crystallization rate and higher β‐nucleation selectivity, but WPP can crystallization at wider temperature range. The results of isothermal crystallization showed that NPP has higher selectivity and higher β‐nucleation efficiency, which favors the formation of high proportion of β‐phase at the isothermal crystallization temperature of 110–130°C with and without subsequent cooling; WPP has lower selectivity, which can only induce high content of β‐phase under isothermal crystallization without subsequent cooling to 25°C. In tuning the crystallization behavior and the properties of β‐PP, the joint influence of the efficiency and selectivity of the β‐NA, and the thermal conditions should be taken into consideration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40115.  相似文献   

8.
用于润滑油改性的乙丙共聚物的合成   总被引:1,自引:0,他引:1  
以V-A1体系为催化剂,己烷为溶剂,采用分子量调节剂合成出了组成、结构、分子量及分子量分布与美国Exxon-8921基本相同的润滑油改性用乙丙共囊物。经应用评定证明其综合性能好,适合调制各种中、高档多级内燃机油。并在2万t/aEPDM生产装置上实现工生化。  相似文献   

9.
This work reports on a correlation between catalyst configuration and copolymer microstructure for ethylene/propylene (E/P) copolymerization using three conventional C2‐symmetric metallocene catalysts, namely, rac‐Et(Ind)2ZrCl2 (EBI), rac‐Me2Si(2‐Me‐4‐Ph‐Ind)2ZrCl2 (SiPh), and rac‐CH2(3‐tBu‐Ind)2ZrCl2 (MBu), with MAO as a common cocatalyst. Copolymerization reactions were conducted in toluene at three different temperatures with varied E/P ratios. Some typically obtained copolymers were characterized in detail using 13C‐NMR spectroscopy, by which triad distribution data were elaborated in a statistical method to determine the reactivity ratios (rE and rP) of the comonomers, which were also obtained by Fineman‐Rose estimation. The production of alternating‐like copolymers from EBI is attributed to the rapid interconversion between two conformation states of the active site, one of which favors the incorporation of propylene but the other one does not. Both SiPh and MBu are structurally more rigid and of larger dihedral angles than EBI; however, SiPh which owns open active site conformation tend to produce random copolymers at all studied temperatures, and for MBu, sterically hindered catalyst, block‐like copolymers were obtained. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
BACKGROUND: How to promote the formation of the γ‐form in a certain propylene‐ethylene copolymer (PPR) under atmospheric conditions is significant for theoretical considerations and practical applications. Taking the epitaxial relationship between the α‐form and γ‐form into account, it is expected that incorporation of some extrinsic α‐crystals, developed by propylene homopolymer (PPH), can enhance the crystallization of the γ‐form of the PPR component in PPR/PPH blends. RESULTS: The PPH component in the blends first crystallizes from the melt, and its melting point and crystal growth rate decrease with increasing PPR fraction. On the other hand, first‐formed α‐crystals of the PPH component can induce the lateral growth of PPR chains on themselves, indicated by sheaf‐like crystal morphology and positive birefringence, which is in turn responsible for enhanced crystallization of the γ‐form of the PPR component. CONCLUSION: Crystalline/crystalline PPH/PPR blends are miscible and the crystallization of the γ‐form of the PPR component is largely enhanced due to the heterogeneous nucleation from the α‐crystals first developed by the PPH component. Our findings could provide an effective way in practice to obtain isotactic polypropylene copolymers rich in γ‐form. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
对丙烯/1-丁烯无规共聚物(PPB)与丙烯/乙烯抗冲共聚物(PPE)的结晶行为进行对比,在等温结晶时,通过相对结晶度随时间的变化关系、等温结晶曲线等研究,表明丙烯/1-丁烯无规共聚物结晶速率明显低于丙烯/乙烯抗冲共聚物,同时丙烯/乙烯抗冲共聚物的等温结晶速率随乙烯单元含量增加没有明显降低。根据Avrami方程计算了共聚物的结晶活化能,证明丙烯/1-丁烯无规共聚物的结晶能力较丙烯/乙烯抗冲共聚物低。扫描电镜分析丙烯/1-丁烯无规共聚物在丁烯单元摩尔分数2.39%时没有韧性拉伸,而丙烯/乙烯抗冲共聚物在乙烯单元摩尔分数3%时出现韧性拉伸。  相似文献   

12.
Wide‐angle X‐ray scattering and differential scanning calorimetry measurements have been conducted on seven random copolymers of propylene with ethylene in order to study the γ phase formation as a function of the comonomer content. The lamellar morphology of the samples was also investigated by small‐angle X‐ray scattering. The content of the γ phase was found to go through a maximum with crystallization temperature and to increase with comonomer concentration, up to a point (ethylene ≥6.5 wt%) where the latter parameter became less influential. The multiple melting endotherms behaviour of the samples was studied by DSC and temperature‐controlled diffractometric techniques. The attribution of the DSC peaks to the different isotactic polypropylene polymorphs that form in these conditions was confirmed. The results obtained permitted us to ascertain that, in the experimental conditions chosen, some further formation of crystallites takes place during the quenching to room temperature after the crystallization isotherm. In this phase, the chains organize themselves in stacks with thin lamellae, forming a distinct population with respect to those formed on isothermal crystallization. The melting of the thinner lamellae determines a convergence of the two populations into just one, still retaining an organization in stacks, that gradually disappears until complete melting of the material. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
Propylene‐based propylene–ethylene random copolymer (PPR) has been widely used in the production of hot‐water pipes. To further improve its toughness and thermal resistance, β‐nucleating agents (β‐NAs) are frequently incorporated. In this study, PPR containing 5.6 mol % ethylene units was modified by two kinds of β‐NAs, that is, calcium pimelate and N,N′‐dicyclohexylterephthalamide. The notched Izod impact strength of PPR increased with the addition of the β‐NAs. Drastically different toughening effects were found between the two β‐NAs. The structure of PPR with and without a β‐NA was investigated by calorimetry, X‐ray diffraction, and thermomechanical analysis. The results indicated that the relative fraction of β crystals (kβ) in the injection‐molded specimens was determined by the type and content of β‐NA. The relationship between kβ and the impact toughness was summarized. A critical value for kβ (0.68) was identified for the brittle–ductile transition of PPR. PPR with β‐NA having a kβ greater than 0.68 displayed a higher impact strength than the other mixtures. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42930.  相似文献   

14.
茂金属催化乙丙共聚进展   总被引:2,自引:0,他引:2  
综述了茂金属催化乙丙共聚的研究 ,包括乙丙共聚物的合成、表征、反应机理及工业化进展。着重介绍了茂金属催化乙丙共聚物的结构和性能的研究成果。  相似文献   

15.
The effect of a β‐nucleating agent (β‐NA) on the properties and structure of a commercial impact polypropylene copolymer (IPC) was investigated. The effect of selected β‐NAs on the impact resistance, stress and strain behaviour of the IPC is reported. In addition, the IPC was fractionated according to crystallinity by preparative temperature rising elution fractionation. Fractions with varying chemical composition and crystallinity were treated with a two‐component β‐NA to investigate the effect of the β‐NA on the various fractions. The results indicate that the efficacy of the β‐NA is dependent on the chemical composition of the polymer that crystallises, more specifically on the sequence length of crystallisable propylene units. The effect of the addition of β‐NAs on the overall morphology of the IPC was also investigated, and in particular the size and distribution of the rubbery particles in these complex reactor blends were probed. © 2014 Society of Chemical Industry  相似文献   

16.
Isothermal crystallization and subsequent melting behavior of two propylene/hexene‐1 copolymers and two propylene/octene‐1 copolymers prepared with metallocene catalyst were investigated. It is found that γ‐modification is predominant in all copolymers. The Avrami exponent shows a weak dependency on comonomer content and comonomer type. At higher crystallization temperatures (Tc) the crystallization rate constant changes more rapidly with Tc and the crystallization half‐time substantially increases. Double melting peaks were also observed at high Tc, which is attributed to the inhomogeneous distribution of comonomer units along the polymer chains and the existence of crystals with different lamellar thicknesses. The equilibrium melting temperatures (T) of the copolymers were obtained by Hoffman–Weeks extrapolation. It was found that the T decreases with increasing comonomer content, but are independent of comonomer type, implying that comonomer units are excluded from the crystal lattice. Dilation of the crystal lattice was also observed, which depends on crystallization, comonomer content, and comonomer type. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 240–247, 2005  相似文献   

17.
Zinc adipate (Adi‐Zn) was observed to be a highly active and selective β‐nucleating agent for isotactic polypropylene (iPP). The effects of Adi‐Zn on the mechanical properties and the β‐crystals content of nucleated iPP were investigated. The impact strength of iPP nucleated with 0.2 wt % Adi‐Zn was 1.8 times higher than that of neat iPP. In addition, wide‐angle X‐ray diffraction analysis indicated that the content of β‐crystals in nucleated iPP (kβ value) reached 0.973 with 0.1 wt % Adi‐Zn, indicating that Adi‐Zn is a highly active and selective β‐nucleating agent for iPP. Furthermore, fast scanning chip calorimetry (FSC) studies using cooling rates from 60 to 13,800 °C min?1 revealed that the formation of β‐crystals significantly depended on the cooling rates. At cooling rates below 3000 °C min?1, only β‐crystals existed. However, at cooling rates above 6000 °C min?1, β‐crystals failed to form. Moreover, a lower critical crystallization temperature that corresponded to the generation of β‐crystals was investigated using cooling‐induced crystallization, and the results are in good agreement with those of a previous study. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43767.  相似文献   

18.
研究了氯化乙丙橡胶的合成,讨论了产物含氯量与BPO加入量、反应温度及反应时间的关系。并用EVA、CPE、合成的CEPDM和CPVC,配制成了性能优良的硬质PVC胶粘剂。  相似文献   

19.
The nonisothermal crystallization behavior and melting process of the poly(ϵ-caprolactone) (PCL)/poly(ethylene oxide) (PEO) diblock copolymer in which the weight fraction of the PCL block is 0.80 has been studied by using differential scanning calorimetry (DSC). Only the PCL block is crystallizable, the PEO block with 0.20 weight fraction cannot crystallize. The kinetics of the PCL/PEO diblock copolymer under nonisothermal crystallization conditions has been analyzed by Ozawa's equation. The experimental data shows no agreement with Ozawa's theoretical predictions in the whole crystallization process, especially in the later stage. A parameter, kinetic crystallinity, is used to characterize the crystallizability of the PCL/PEO diblock copolymer. The amorphous and microphase separating PEO block has a great influence on the crystallization of the PCL block. It bonds chemically with the PCL block, reduces crystallization entropy, and provides nucleating sites for the PCL block crystallization. The existence of the PEO block leads to the occurrence of the two melting peaks of the PCL/PEO diblock copolymer during melting process after nonisothermal crystallization. The comparison of nonisothermal crystallization of the PCL/PEO diblock copolymer, PCL/PEO blend, and PCL and PEO homopolymers has been made. It showed a lower crystallinity of the PCL/PEO diblock copolymer than that of others and a faster crystallization rate of the PCL/PEO diblock copolymer than that of the PCL homopolymer, but a slower crystallization rate than that of the PCL/PEO blend. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1793–1804, 1997  相似文献   

20.
研究了三元乙丙橡胶/聚丙烯(EPDM/PP)共混物和动态硫化EPDM/PP热塑性弹性体(TPV)的等温结晶行为及形态结构,并用Avrami方程对其进行等温结晶动力学分析。结果表明,EPDM/PP共混物和EPDM/PP TPV的等温结晶行为符合Avrami方程,在相同的结晶温度下,TPV比共混物的Avrami指数小,半结晶时间短,结晶速率常数大;EPDM/PP共混物为双连续相结构,而EPDM/PP TPV是以硫化的细小橡胶颗粒为分散相、PP为连续相的"海-岛"结构,橡胶颗粒尺寸约为0.5μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号