首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(aniline‐co‐o‐aminophenol) (PANOA) was synthesized via electrochemical copolymerization of o‐aminophenol and aniline using p‐toluene sulfonate (TSA?) as the counterion. The redox transformation of PANOA is accompanied by the exchange of anions into and out of the copolymer, and the feasibility of perchlorate (ClO4?) removal via an electrically switched ion exchange process was evaluated in this study. The results of electrochemical quartz crystal microbalance (EQCM), electrochemical impedance spectroscopy (EIS), and Fourier transform infrared spectroscopy (FTIR) demonstrated the successful release of TSA? upon reduction and uptake of ClO4? upon reoxidation of the copolymer. Also, in this work, the possible ion‐exchange mechanism of PANOA was proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41895.  相似文献   

2.
A synthesized copolymer, synthesized from HFMA (hexaflurobutyl methacrylate) and SPEG (PHFMA‐g‐PSPEG), was synthesized. PHFMA‐g‐PSPEG intercalated to the DNA base pair via a strong hydrophobic force, and this was conformed by ultraviolet spectroscopy, transmittance measurements, micropolarity measurements, resonance light scattering (RLS) spectroscopy, and particle size measurements. The copolymer was used as a new probe to detect DNA according to the RLS technique. The hydrophobic interaction between PHFMA‐g‐PSPEG and DNA significantly enhanced the RLS signal, and the enhanced RLS intensity at 422 nm was proportional to the nucleic acid concentration within the range of 0.09–0.90 mg/L with a detection limit (3σ) of 4.0 μg/L. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
All‐trans‐retinoic acid (RA) was chemically conjugated to biodegradable poly(ε‐caprolactone) (PCL10; number‐average Mw ≈ 1250) via an ester linkage. The conjugation was carried out using N,N‐dicyclohexylcarbodiimide and 4‐dimethyl aminopyridine as a coupling agent. The molar ratio of the drug to the polymer was 1.11 as determined by 1H‐NMR analysis. DSC and WAXD results showed that the formation of crystalline structures of RA was effectively suppressed by conjugation with PCL. The RA–PCL conjugates were formulated into nanoparticles by a spontaneous phase‐inversion technique. Morphological characteristics of the resultant nanoparticles and drug‐loading efficiencies were compared with those of free RA‐loaded nanoparticles. The drug‐loading efficiency of RA–PCL conjugates was almost 100%, while that of free RA was only ~12%. The majority of unconjugated RA was found to form undesirable free‐drug crystals out of nanoparticles, as observed by TEM analysis. This study demonstrates that the conjugation approach of RA to PCL can be an effective means to immobilize and encapsulate RA within nanoparticles for pharmaceutical applications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1631–1637, 2003  相似文献   

4.
A high cycling stability material and an additive manufacturing method are reported for the fabrication of solid electrochromic devices. The poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate)/multi‐walled carbon nanotube (PEDOT:PSS/MWCNT) nanocomposites were synthesized via in situ polymerization. A carboxymethyl cellulose gel was used as the ink vehicle for screen printing. The electrochromic (EC) performance of films patterned by screen printing was also examined. The results of characterization indicate that strong interfacial interactions occurred between PEDOT:PSS and the MWCNTs and the MWCNTs formed a network in these conducting polymers film, so the composite was more conductive than pure PEDOT:PSS. Devices containing PEDOT:PSS/MWCNTs were more stable after 1000 cycles, exhibited higher rate of ion exchange and faster increases in current. The composite containing 0.3 wt % MWCNTs also had a 23% higher color contrast (ΔE*) than pure PEDOT:PSS at 2.5 V applied voltages. The EC inks with well printability not only can be used to print large area films, but also can print fine lines and pixel‐type dots in displays. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45943.  相似文献   

5.
An electrochemical molecularly imprinted polymer (MIP) sensor for detecting the existence of epigallocatechin‐3‐gallate (EGCG) in tea and its products was successfully developed on the basis of a glassy carbon electrode modified with an electropolymerized nonconducting poly(o‐phenylenediamine) film. The properties of the electrode were characterized by cyclic voltammetry, differential pulse voltammetry, and infrared spectroscopy. The template molecules could be rapidly and thoroughly removed by methanol/acetic acid. The linear response range for EGCG was 5.0 × 10?7–1.0 × 10?4 mol/L, and the limit of detection was as low as 1.6 × 10?7 mol/L. The prepared MIP sensor could discriminate between EGCG and its analogs. In addition, satisfactory results were obtained in the detection of real tea samples. The results of our investigation indicate that the MIP sensor was useful for the determination of EGCG with excellent selectivity, high sensitivity, repeatability, and reproducibility. This MIP sensor provides the potential for monitoring the variation of EGCG content during the industrial processes and for predicting the quality of tea and its products. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
The micelles of a recently synthesized copolymer of poly(vinyl alcohol)‐b‐polyacrylonitrile added to the growth solution of the filamentous yeast Trichosporon cutaneum strain R57 led to the formation of a binary system consisting of micelles and cells. The resulting micelle/cell system was studied as a model for the removal of toxic concentrations of heavy‐metal ions (cadmium and copper) from aqueous solutions. The ion‐removal efficiency mediated by this system was higher than for free‐floating cells. The copper‐removal efficiency from the solution reached a level of 65% after 24 h of cultivation, whereas the cadmium‐removal efficiency reached 62% after 6 h of growth. For comparison, the free‐floating cells removed 42% of copper and only 38% of cadmium from the solutions. The effects of surface interactions between the cells and polymer micelles on the biosorption capacity of the cells are discussed in the article. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Amidation of poly(methyl vinyl ether‐alt‐maleic anhydride) with 3‐aminophenylboronic acid was used to prepare a new boronic acid polymer. The binding of catechol dye, Alizarin Red S to the polymer obtained resulted in getting a stable, colored sensor which was used to establish association constants with different diols in competitive assay. The binding of different diols was readily detected by color change and absorbance values measured at 450 nm were used to calculate the association constants. The polymer obtained formed high‐affinity complexes with ribonucleosides, particularly cytidine and uridine. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40778.  相似文献   

8.
Poly(2‐iodoaniline) (PIANI) and poly(aniline‐co‐2‐iodoaniline) [P(An‐co‐2‐IAn)] were synthesized by electrochemical methods in acetonitrile solution containing tetrabutylammonium perchlorate (TBAP) and perchloric acid (HClO4). The voltametry of the copolymer shows characteristics similar to those of conventional polyaniline (PANI), and it exhibits higher dry electrical conductivity than PIANI and lower than PANI. The observed decrease in the conductivity of the copolymer relative to PANI is attributed to the incorporation of the iodine moieties into the PANI chain. The structure and properties of these conducting films were characterized by FTIR and UV‐Vis spectroscopy and by an electrochemical method (cyclic voltametry). Conductivity values, FTIR and UV‐Vis spectra of the PIANI and copolymer were compared with those of PANI and the relative solubility of the PIANI and the copolymer powders was determined in various organic solvents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1652–1658, 2003  相似文献   

9.
Three types of carbon‐film electrodes, made from electrical resistors with 1.5‐, 15‐, and 140‐Ω nominal resistances, were used to develop redox‐mediated sol–gel biosensors, and the results were compared with those from previously investigated 2‐Ω carbon‐film electrodes. Two different redox mediators, copper hexacyanoferrate and poly(neutral red), were deposited onto the carbon‐film electrodes, with the latter showing good electrochemical properties for electroanalytical applications, which were best on electrodes made from 15‐Ω carbon‐film resistors. It was not possible to deposit mediator film on the carbon‐film resistor electrodes of 140‐Ω nominal resistance. Glucose oxidase was immobilized on poly(neutral red) modified electrodes with sol–gel encapsulation from a mixture of 3‐glycidoxypropyltrimethoxysilane and methyltrimethoxysilane precursors at a volume ratio of 2 : 1. The best sensor electrochemical properties and response to glucose in model solution were found with electrodes constructed from 15‐Ω resistors, although the stability under the same conditions was better in the biosensors constructed with 2‐Ω nominal resistance electrodes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A novel method of manufacturing composite conductive fibers was developed through electrochemical polymerization with an apparatus consisting of insulating fibers, cotton fabrics as electrolytic solution holders, an electrolytic solution, and planer electrodes. By this method, poly(ethylene terephthalate) (PET) fibers coated with polyaniline (PAN) were prepared readily and yielded PET–PAN composite conductive fibers (PPCFs). The content of PAN in PPCFs increased with an increase in both the aniline concentration in the electrolytic solution and the polymerization voltage, although it did not depend on the load applied to the electrodes. Observations of the PPCF surface by scanning electron microscopy confirmed that the formation processes of PPCFs could be divided into three steps: (1) fine (nanometer‐size) granular PAN was generated from the anode and adsorbed onto the PET fiber surface, (2) the size of the granular PAN increased up to about 90 nm in a short time, and (3) the granular PAN was linked together to form networks. The conductivity of PPCFs increased with an increasing content of PAN networks. The surface resistance of the PPCF fabric was about 3 × 105 Ω/□ at a PAN content of approximately 2 wt %. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1073–1078, 2003  相似文献   

11.
8‐Methacryloxyquinoline (MAQ) was prepared through the reaction of 8‐hydroxyquinoline with either methacryloyl chloride or methacrylic acid in the presence of triethylamine or N,N‐dicyclohexylcarbodiimide, respectively. MAQ was polymerized in dimethylformamide with 2,2‐azobisisobutyronitrile as the initiator. The reactions of the resulting polymers with hydroxyl and amino compounds were studied. The polymers were characterized with IR, 1H‐NMR, and mass spectroscopy. Some of the synthesized polymers were tested for their antimicrobial activity against bacteria and fungi. Generally, all the polymers were effective against the tested microorganisms, but their growth‐inhibition effects varied. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Poly(2‐chloromethyl‐2,3‐dihydrothieno[3,4‐b][1,4]dioxine), a chloromethyl functionalized poly(3,4‐ethylenedioxythiophene) derivative (PEDOT‐MeCl), was synthesized electrochemically via the potentiostatic polymerization of its monomer in dichloromethane solution containing suitable tetrabutylammonium tetrafluoroborate, then it was used for the characterization of film properties and the fabrication of electrochemical sensor. The properties of the resulting PEDOT‐MeCl film were characterized by different methods such as cyclic voltammetry, electrochemical impedance spectroscopy, Fourier transform infrared and ultraviolet–visible techniques, scanning electron microscope, and thermogravimetric analysis. The PEDOT‐MeCl film displayed a good reversible redox activity, remarkable capacitance properties, good thermal stability, rough, and porous structure, especially fluorescent spectra indicated that PEDOT‐MeCl was a blue‐emitter with maximum emission centered at 396 and 398 nm. Finally, the PEDOT‐MeCl film was employed for the fabrication of the sensing electrode, and dopamine was chosen as a model analyte for the application of the electrochemical sensor. Results indicated that the PEDOT‐MeCl film as sensing interface was feasible, and studies of these film properties were very beneficial for studying properties and applications of other poly(3,4‐ethylenedioxythiophene) derivative films. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2660–2670, 2013  相似文献   

13.
In this article, a series of amphiphilic graft copolymers, namely poly(higher α‐olefin‐copara‐methylstyrene)‐graft‐poly(ethylene glycol), and poly(higher α‐olefin‐co‐acrylic acid)‐graft‐poly(ethylene glycol) was used as modifying agent to increase the wettability of the surface of linear low‐density polyethylene (LLDPE) film. The wettability of the surface of LLDPE film could be increased effectively by spin coating of the amphiphilic graft copolymers onto the surface of LLDPE film. The higher the content of poly(ethylene glycol) (PEG) segments, the lower the water contact angle was. The water contact angle of modified LLDPE films was reduced as low as 25°. However, the adhesion between the amphiphilic graft copolymer and LLDPE film was poor. To solve this problem, the modified LLDPE films coated by the amphiphilic graft copolymers were annealed at 110° for 12 h. During the period of annealing, heating made polymer chain move and rearrange quickly. When the film was cooled down, the alkyl group of higher α‐olefin units and LLDPE began to entangle and crystallize. Driven by crystallization, the PEG segments rearranged and enriched in the interface between the amphiphilic graft copolymer and air. By this surface modification method, the amphiphilic graft copolymer was fixed on the surface of LLDPE film. And the water contact angle was further reduced as low as 14.8°. The experimental results of this article demonstrate the potential pathway to provide an effective and durable anti‐fog LLDPE film. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
A thermosensitive amphiphilic triblock copolymer, poly(d,l ‐lactide) (PLA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAAM)‐b‐PLA, was synthesized by the ring‐opening polymerization of d,l ‐lactide; the reaction was initiated from a dihydroxy‐terminated poly(N‐isopropyl acrylamide) homopolymer (HO‐PNIPAAM‐OH) created by radical polymerization. The molecular structure, thermosensitive characteristics, and micellization behavior of the obtained triblock copolymer were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, dynamic light scattering, and transmission electron microscopy. The obtained results indicate that the composition of PLA‐b‐PNIPAAM‐b‐PLA was in good agreement with what was preconceived. This copolymer could self‐assemble into spherical core–shell micelles (ca. 75–80 nm) in aqueous solution and exhibited a phase‐transition temperature around 26 °C. Furthermore, the drug‐delivery properties of the PLA‐b‐PNIPAAM‐b‐PLA micelles were investigated. The drug‐release test indicated that the synthesized PLA‐b‐PNIPAAM‐b‐PLA micelles could be used as nanocarriers of the anticancer drug adriamycin (ADR) to effectively control the release of the drug. The drug‐delivery properties of PLA‐b‐PNIPAAM‐b‐PLA showed obvious thermosensitive characteristics, and the release time of ADR could be extended to 50 h. This represents a significant improvement from previous PNIPAAM‐based drug‐delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45304.  相似文献   

15.
The electropolymerization of 4‐methyl carbazole‐3‐carboxylic acid was successfully performed on a stainless steel (316L) surface with lithium perchlorate/acetonitrile as the supporting electrolyte. The corrosion resistance of the new coating, poly(4‐methyl carbazole‐3‐carboxylic acid) (PCz), was investigated. To this end, potentiodynamic polarization curves, open circuit potentials, and electrochemical impedance spectroscopy were used to evaluate the capacity of the PCz coating to protect the steel surface. The corrosion tests indicated that PCz exhibited effective anodic protection in a corrosive test solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Polymeric calcium phosphate cements (PCPC) derived from biodegradable poly‐γ‐glutamic acid (γ‐PGA) were prepared in an attempt to improve the mechanical strength of calcium phosphate cement (CPC). The characteristics of the PCPCs were compared with those of cement incorporated with citric acid. The diametral tensile and compressive strengths of the CPC incorporated with γ‐PGA were significantly higher than that of cement incorporated with citric acid at equivalent concentrations (P < 0.05). The maximal diametral tensile and compressive strengths of the CPC incubated for 1 week in physiological saline solution were approximately 18.0 and 50.0 MPa, respectively. However, the initial setting time of the PCPC was slower than that of CPC incorporated with citric acid. The formation of ionic complexes between calcium ions and γ‐PGA was observed using FTIR spectroscopy. Hydroxyapatite (HA) formation was retarded by γ‐PGA incorporation according to scanning electronic microscopy (SEM) and powder X‐ray diffraction (XRD) observations. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The purpose of this study was to evaluate the in vitro characteristics of poly(lactic acid‐co‐lysine) arginine–glycine–aspartic acid (PLA–PLL–RGD) nanoparticles (NPs) loaded with mitoxantrone. PLA–PLL–RGD NPs with a particle size of 200 nm were prepared with a modified emulsification solvent‐diffusion method. The encapsulation efficiency of the mitoxantrone‐loaded NPs was 85%. In vitro release experiments showed that the release of the drug was prolonged and sustained, and approximately 60.2% of the mitoxantrone was released in the first week. The released drug was integrated to achieve desired drug‐release profiles and still possessed bioactivity according to a 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2h‐tetrazolium bromide assay, which indicated that mitoxantrone‐loaded NPs were more cytotoxic against Michigan Cancer Foundation 7 (MCF‐7) breast cancer cells than mitoxantrone. Furthermore, the association processes of NPs with MCF‐7 cells, including binding and effective internalization, were investigated in vitro. The cellular uptake of the NPs was qualitatively studied with confocal laser scanning microscopy and was confirmed with flow cytometry analysis. These experimental results indicated that PLA–PLL–RGD NPs could be used as drug carriers for mitoxantrone. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Polyesteramide (PEA) coating resin, synthesized from linseed oil, a sustainable resource, was found to show improved physicomechanical and acid‐resistance properties. To further improve these properties in terms of alkali resistance, scratch hardness, and thermal stability and to reduce the baking temperature, we have attempted to incorporate styrene into the polymer backbone through its copolymer with maleic anhydride. The structural elucidation of modified PEA resin (SCPEA) was carried out by FTIR, 1H‐NMR, and 13C‐NMR spectroscopes. The physicomechanical and chemical‐resistance properties were investigated by standard methods and thermal stability was investigated by thermogravimetric analysis method. A comparative study of these properties of PEA and SCPEA was carried out. It was observed that the SCPEA showed better properties than the reported one. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2538–2544, 2004  相似文献   

19.
Poly(ethylene‐co‐vinyl acetate) with 55 wt % vinyl acetate units (EVA55) was cryogenically ground and saponified in KOH/ethanol solution to obtain poly(ethylene‐co‐vinyl alcohol) (EVOH55). Polymeric antimicrobial agents were synthesized by reacting three antimicrobial agents, 4‐aminobenzoic acid (ABA), salicylic acid (SA), and 4‐hydroxy benzoic acid (HBA) with EVOH55. The polymers became more flexible and exhibited lower melting peak temperature and heat of fusion as the content of the chemically bound ABA, SA, and HBA units increased. These phenomena appeared more significant in the order of ABA < HBA < SA. S. aureus, Gram‐positive bacterium, was more susceptible to the polymeric antimicrobial agents than P. aeruginesa, Gram‐positive bacterium. The antimicrobial activity increased in the order of EVOH55‐HBA < EVOH55‐ABA < EVOH‐SA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 765–770, 2004  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号