首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phillips‐type catalysts are responsible for the commercial production of more than one‐third of all polyethylene sold worldwide. Many types of chromium‐based catalysts are used in the Phillips polymerization process. Ordered mesoporous silica structures were synthesized using various surfactant species. Chromium nitrate nonahydrate (Cr(NO3)3·9H2O) complex was grafted onto the surface of pure silica and was used for ethylene polymerization. The materials were characterized using X‐ray diffraction, nitrogen adsorption‐desorption, inductively coupled plasma optical emission spectroscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy. In the as‐synthesized materials, Cr3+ is present as a surface species in pseudo‐octahedral coordination. After calcination, Cr3+ is almost completely oxidized to Cr6+, which is anchored onto the surface in various oxidative states. The catalyst polymerization activity is dependent on the chromium loading, the pre‐calcination temperature and the support properties. In particular, the chromium catalyst prepared using spherical SBA‐15 is more active than the other catalysts investigated. Porous and nano‐fibrous polyethylene samples were prepared using various silica‐supported chromium catalytic systems. Differential scanning calorimetry results show that the melting point of samples produced with the SBA‐15‐supported catalyst is higher than that of samples produced with Cr/SiO2 under the same conditions, which could be related to the existence of an extended‐chain structure. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Ethylene polymerization catalysts have been prepared by grafting chromium (III) nitrate onto Al/SBA‐15 and Ti/SBA‐15 mesoporous materials. A combination of XRD, nitrogen adsorption, TEM, and inductively coupled plasma‐atomic emission spectroscopy (ICP‐AES), were used to characterize the catalysts. Polymerization activity of Cr/SBA‐15 catalyst is significantly improved by Al or Ti insertion to the supports. Particularly, the chromium catalyst prepared with Ti/SBA‐15 support is more active than Al/SBA‐15 catalyst. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
The production of biodiesel from the lipid of wastewater sludge was studied using SBA‐15 impregnated with the heteropolyacid H3PO4·12WO3·xH2O (PW12) as a mesoporous heterogeneous catalyst. X‐ray diffraction, Brunauer‐Emmett‐Teller surface area, thermalgravimetric analysis, and scanning electron microscopy were applied to characterize the prepared catalysts. Catalytic performances were evaluated in a microreactor setup under different experimental conditions. The biodiesel yield for a sample impregnated with 15 % PW12 was 30.14 wt‐% at a temperature of 135 °C and a pressure of 135 psi for 3 h reaction time.  相似文献   

4.
Heterogeneous metallocene catalysts were prepared by incipient wetness impregnation of AlSBA‐15 (Si/Al = 4.8, 15, 30, 60, and ∞) mesostructured materials with (nBuCp)2ZrCl2/MAO. For comparative purposes commercial silica and silica–alumina (Si/Al = 4.8) supports were also impregnated with the MAO/metallocene catalytic system. A combination of X‐ray powder diffraction, nitrogen adsorption–desorption isotherms at 77 K, transmission electron microscopy, ICP‐atomic emission spectroscopy, and UV–vis spectroscopic data, were used to characterize the supports and the heterogeneous catalysts. Ethylene polymerizations were carried out in a schlenk tube at 70 °C and 1.2 bar of ethylene pressure. The polyethylene obtained was characterized by GPC, DSC, and SEM. Catalysts prepared with mesostructured SBA‐15 supports exhibited better catalytic performance than those supported on amorphous silica and silica–alumina. In general, higher ethylene polymerization activity was achieved if (nBuCp)2 ZrCl2/MAO catalytic system was heterogenized using supports with lower pore size in the range of the mesopores and lower Si/Al ratio. All catalysts produced high‐density polyethylene, with high crystallinity values and fibrous morphology when SBA‐15 mesostructured materials were used as supports. POLYM. ENG SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

5.
Highly ordered SBA‐16 silica mesoporous materials were synthesised hydro‐solvothermally under the acidic medium using SiO2/F127/BuOH/HCl/H2O gel. Pure SiO2 powders were prepared from inexpensive and environmentally friendly silica source of rice husk. The pore size of the materials could be optimised by using a blend of P123 and F127 templates. Sn‐substituted SBA‐16 mesoporous materials were yielded via the direct injection of stannic chloride into the fixed gel in acidic medium. X‐ray diffraction, N2 adsorption, scanning electron microscope/transmission electron microscope results suggest that tin ions were incorporated into the Si‐SBA‐16 framework by isomorphous substitution between Sn and Si ions. Elemental analysis indicates that tin can be substituted in the range of Si/Sn = 21.4–10.5. UV–vis, XPS, TPR‐H2, TPD‐NH3 results reveal that tin atoms are highly dispersed in 4+ oxidation state and mostly occupy in the silica framework. The degree of tin incorporation into silica framework can easily be controlled by a simply adjustment of the H2O and HCl molar ratios. The mesoporous Sn‐SBA‐16 materials were an active benzylation catalyst with almost 100% selectivity to monoalkylated product in alkylation of aromatics with benzyl chloride. © 2011 Canadian Society for Chemical Engineering  相似文献   

6.
The polymerization of butadiene (Bd) with chromium(III) acetylacetonato [Cr(acac)3]‐trialkylaluminum (AlR3) or methylaluminoxane (MAO) catalysts was investigated for the synthesis of 1,2‐poly(Bd). The polymerization of Bd was found to proceed with Cr(acac)3‐AlR3 (R‐Me, Et, i‐Bu) catalysts to give poly(Bd) with a high 1,2‐vinyl content, but highly isotactic 1,2‐poly(Bd) was not synthesized. The Cr(acac)3‐MAO catalyst gave a polymer consisting of low 1,2 units. The effects of the Al/Cr mole ratios on the polymerization of Bd with the Cr(acac)3‐AlR3 catalysts were observed. With an increase of Al/Cr mole ratios, the isotactic (mm) content of the polymer increased but the 1,2‐vinyl contents decreased. The effects of the aging time and temperatures of the catalysts on the polymerization of Bd with the Cr(acac)3‐AlR3 catalysts were also observed, and the lower polymerization temperature and the prolonged aging time were favored to produce the 1,2‐vinyl structure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1621–1627, 2000  相似文献   

7.
Composite materials containing Raney Ni and Cu‐ZSM‐5 are highly active catalysts for the selective catalytic reduction (SCR) of NO by NH3. Their catalytic properties were studied with particular attention to the influence of moisture and SO2 in the feed, and to effects of catalyst shaping operations. Composite materials (16–20 wt‐% zeolite) were prepared by mixing the components, with different degree of segregation in the resulting pressed particles, or by growing ZSM‐5 crystallites on the surface of leached Raney Ni, which were then exchanged with Cu ions. Catalytic tests were performed with 1000 ppm NO, 1000 ppm NH3, 2 % O2 in He, at 3–6.5 · 105 h–1 (related to zeolite component). With physical mixtures, the catalytic behaviour strongly depended on the mixing strategy, particles containing both Ni and zeolite being inferior to mixed Ni‐only and zeolite‐only particles. The SCR activity was promoted by 2 % H2O in the feed, SO2 (200 ppm) was a moderate poison at low temperatures, but indifferent or slightly promoting at high temperatures. A catalyst prepared from ZSM‐5 grown on Raney Ni, which was ranked intermediate in dry feed, was promoted to excellent performance in H2O and SO2 containing feed at T > 700 K and was stable for 38 h at 845 K. The results suggest that SCR catalysts containing highly active zeolites should be produced avoiding shaping operations e.g. by use of zeolite crystallites grown on wire packings.  相似文献   

8.
A series of Fe/Beta@SBA‐15 core‐shell structural catalysts were designed and controllablly constructed by an ultradilute liquid‐phase coating method. Their catalytic activities were examined for ammonia selective catalytic reduction of NOx. It was found that their acidity and redox property were strongly dependent on SBA‐15 shells, Fe/Beta@SBA‐15 catalysts exhibit good propene and SO2 poisoning resistance, excellent hydrothermal stability, and wide NOx conversion temperature range (325–600°C) under a high gas hour space velocity. The kinetics results indicate that the mesoporous structure of SBA‐15 shell lowers the diffusion limitation and promotes the reactants accessing to active sites. Moreover, TGA and in situ DRIFT results reveal that SBA‐15 shell can not only prevent the generation and deposition of coke and nitrate species from blocking active sites but also serve as an effective “obstacle” to inhibit active FeOx nanoparticles from agglomerating at high temperature, leading to the higher propene resistance than Fe/Beta. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3967–3978, 2018  相似文献   

9.
A series of Mg‐modified SBA‐15 mesoporous silicas with different MgO contents were successfully synthesized by a simple one‐pot synthesis method and further impregnated with Ni. The Mg‐modified SBA‐15 materials and supported Ni catalysts were characterized by N2 physisorption (BET), X‐ray diffraction (XRD), temperature‐programmed desorption of CO2 (CO2‐TPD), temperature‐programmed H2 reduction (H2‐TPR), and temperature‐programmed hydrogenation (TPH) techniques and used for methane dry reforming with CO2. CO2‐TPD results proved that the addition of Mg increased the total amount of basic sites which was responsible for the enhanced catalytic activity over the Mg‐modified Ni catalyst. The excellent catalytic stability of Ni/8Mg‐SBA‐15 was ascribed to less coking and higher stability of the Ni particle size due to the introduction of Mg.  相似文献   

10.
This work describes the use of Co(II) and Ni(II) impregnated SBA‐15 as catalysts for the oxidative degradation of a few persistent chlorinated phenols in an aqueous medium: 2‐chlorophenol (2‐CP), 4‐chlorophenol (4‐CP) and 2,4,6‐trichlorophenol (2,4,6‐TCP). The catalysts were characterised in terms of their crystallographic features, surface topography, functional groups, thermal stability, etc. The oxidation reactions were carried out using the reaction time, concentration of chlorophenol, amount of catalyst and pH of the reaction mixture as the process variables with or without hydrogen peroxide as the chemical oxidising agent. The conversion achieved with Co/SBA‐15 for 2‐CP, 4‐CP and 2,4,6‐TCP was respectively 84.7%, 78.4% and 64.8% with H2O2 and 86.3%, 80.2% and 70.3% in the absence of H2O2. The conversion with Ni/SBA‐15 also at 353 K for 2‐CP, 4‐CP and 2,4,6‐TCP was, respectively, 82.3%, 81.9% and 64.0% at 5 h with H2O2 and 89.5%, 82.9% and 65.6% without H2O2. The reactions followed pseudo‐first‐order kinetics. The leachability study indicated that the catalysts release very little Co and Ni to water. Therefore, the possibility of water contamination through metal leaching was almost negligible. Oxidative degradation was confirmed by measuring the total organic carbon. © 2012 Canadian Society for Chemical Engineering  相似文献   

11.
CoMoS/Al2O3 catalyst, which was prepared using Co(MeAA)2·2H2O as a new Co precursor, showed activity for hydrodesulfurization (HDS) higher than that of conventional catalysts, which were prepared using Co(NO3)·6H2O as a Co precursor and/or by adding ethylene-di-amine-tetra-acetic acid (EDTA) as a chelating agent. Catalyst of a similar activity was also obtained simply by impregnating a conventional CoMo/Al2O3 catalyst with an aqueous solution of methylacetoacetate (MeAA) followed by drying and sulfidation. The added MeAA reacted with Co to produce Co(MeAA)2·2H2O on the catalyst surface during impregnation step, such that the resulting catalyst became similar to one prepared by direct impregnation with Co(MeAA)2·2H2O. The in-situ synthesis of Co(MeAA)2·2H2O on the catalyst surface was advantageous over the method of directly adding the Co precursor to the impregnation solution because the former method did not use a basic material, which was required for the synthesis of the Co precursor. Furthermore, MeAA was soluble in water, whereas Co(MeAA)2·2H2O had to be dissolved in an organic solvent, e.g., 1,4-dioxane. The Co species in the MeAA-added catalysts were sulfided at temperatures higher than those of conventional catalysts, and consequently the former catalysts contained greater amounts of the HDS-active CoMoS phase than the latter.  相似文献   

12.
Hybrid titanium catalysts supported on silica/poly(styrene‐co‐acrylic acid) (SiO2/PSA) core‐shell carrier were prepared and studied. The resulting catalysts were characterized by Fourier transform infrared (FTIR) spectroscopy, laser scattering particle analyzer and scanning electronic microscope (SEM). The hybrid catalyst (TiCl3/MgCl2/THF/SiO2·TiCl4/MgCl2/PSA) showed core‐shell structure and the thickness of the PSA layer in the two different hybrid catalysts was 2.0 μm and 5.0 μm, respectively. The activities of the hybrid catalysts were comparable to the conventional titanium‐based Ziegler‐Natta catalyst (TiCl3/MgCl2/THF/SiO2). The hybrid catalysts showed lower initial polymerization rate and longer polymerization life time compared with TiCl3/MgCl2/THF/SiO2. The activities of the hybrid catalysts were enhanced firstly and then decreased with increasing P/P. Higher molecular weight and broader molecular weight distribution (MWD) of polyethylene produced by the core‐shell hybrid catalysts were obtained. Particularly, the hybrid catalyst with a PSA layer of 5.0 μm obtained the longest polymerization life time with the highest activity (2071 kg PE mol?1 Ti h?1) and the resulting polyethylene had the broadest MWD (polydispersity index = 11.5) under our experimental conditions. The morphology of the polyethylene particles produced by the hybrid catalysts was spherical, but with irregular subparticles due to the influence of PSA layer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
In this study, Cu‐loaded Santa Barbara amorphous (SBA)‐15 catalysts were synthesized by impregnation method and further used for catalytic wet peroxidation (CWPO) of pyridine from aqueous solution using hydrogen peroxide as oxidant. The synthesized catalysts have been characterized by Brunauer–Emmett–Teller surface area: temperature‐programmed reduction, H2‐chemisorption, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. Characterization results indicate good dispersion of Cu species inside the porous structure of SBA‐15. The effect of various parameters such as Cu loading on SBA‐15, pH, catalyst dose, H2O2 concentration, and temperature have been studied for their effect on CWPO of pyridine. More than 97% pyridine removal and 92% total organic carbon removal was achieved at optimum condition. Cu/SBA‐15 showed stable performance during reuse for six cycles with negligible copper leaching. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2577–2586, 2013  相似文献   

14.
A novel, simple, soft, and fast microwave‐assisted hydrothermal method was used for the preparation of single‐crystal nanorods of hexagonal rhabdophane‐type La1?xSrxPO4?x/2·nH2O (x = 0 or 0.02) from commercially available La(NO3)3·6H2O, Sr(NO3)2, and H3PO4. The synthesis was conducted at 130°C for 20 min in a sealed‐vessel microwave reactor specifically designed for synthetic applications, and the resulting products were characterized using a wide battery of analytical techniques. Highly uniform, well‐shaped nanorods of LaPO4·nH2O and La0.98Sr0.02PO3.99·nH2O were readily obtained, with average length of 213 ± 41 nm and 102 ± 25 nm, average aspect ratio (ratio between length and diameter) of 21 ± 9 and 12 ± 5, and specific surface area of 45 ± 2 and 51 ± 1 m2/g, respectively. In both cases, the single‐crystal nanorods grew anisotropically along their c crystallographic‐axis direction. At 700°C, the hexagonal rhabdophane‐type phase has already transformed into the monoclinic monazite‐type structure, although the undoped and Sr‐doped nanorods retain their morphological features and specific surface area during calcination.  相似文献   

15.
Lightweight glass‐ceramic material similar to foam glass was obtained at 700°C–800°C directly from alkali‐activated silica clay and zeolitized tuff without preliminary glass preparation. It was characterized by low bulk density of 100–250 kg/m3 and high pore size homogeneity. Chemical processes occurring in alkali‐activated silica clay and zeolitized tuff were studied using X‐ray diffraction, thermal gravimetry, IR‐spectroscopy, and scanning electron microscopy. Pore formation in both compositions is caused by dehydration of hydrated sodium polysilicates (Na2mSiO2·nH2O), formed during alkali activation. Additional pore‐forming gas source in alkali‐activated zeolitized tuff is trona, Na3(CO3)(HCO3)·2H2O, formed during interaction between unbound NaOH and CO2 and H2O from air. Influence of mechanical activation of raw materials on chemical processes occurring in alkaline compositions was also studied.  相似文献   

16.
In this study, we aimed to fabricate a form‐stable phase‐change hydrogel (PCH) with excellent mechanical properties and heat‐storage properties. Sodium alginate (SA) and polyacrylamide (PAAm) composite hydrogels were prepared with ionically crosslinked SA in a PAAm hydrogel network. Glauber's salt [i.e., sodium sulfate decahydrate (Na2SO4·10H2O)] was incorporated within the hydrogel network as a phase‐change material. Scanning electron microscopy micrographs revealed that Na2SO4·10H2O was confined in the micropores of the hydrogel inner spaces, and differential scanning calorimetry curves showed that the composite hydrogel possessed a considerable storage potential. Mechanical properties tests, such as tensile and compressive measurements, presented a decreasing trend with increasing Na2SO4·10H2O dosage. We concluded that the prepared composite PCH could be used to design hydrogel materials with thermal‐energy‐storage applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43836.  相似文献   

17.
Poly(lactic acid) was synthesized from cheap, commercially available aqueous lactic acid (85–90% w/w) with ε‐caprolactam and SnCl2·2H2O as catalysts in the absence of organic solvents. As a result, poly(lactic acid) with a molecular weight of 50,000 and a yield of 87–94% was prepared in 16 h. The new procedure is quite simple and cheap. The starting material is renewable aqueous lactic acid. The effects of the amount of the catalyst, the reaction temperature, and the reaction time on the polymerization were investigated in detail. The polymers obtained by ε‐caprolactam and SnCl2·2H2O were characterized with gel permeation chromatography, infrared, and nuclear magnetic resonance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

18.
Based on chemical modeling of phase equilibria for the NH4Cl‐MgCl2‐AlCl3‐H2O system, a practical approach to produce Mg‐Al spinel (MgAl2O4) (widely used as refractory brick, supports in catalysts, and inert material for oxygen carriers) is proposed and proven feasible. This novel process includes coprecipitation of Mg4Al2(OH)14·3H2O from the NH3‐MgCl2‐AlCl3‐H2O system; calcination of Mg4Al2(OH)14·3H2O to obtain Mg‐Al spinel and recovery of NH4Cl from NH4Cl‐rich solutions by feeding MgCl2‐AlCl3. A MSMPR reactor was applied to investigate the effect of temperature, feed concentration, and NH4Cl addition on coprecipitation of precursor Mg4Al2(OH)14·3H2O from MgCl2‐AlCl3 solutions with Mg/Al ratio = 2 through gradual addition of NH4OH. The phase equilibria of the NH4Cl‐MgCl2‐AlCl3‐H2O system were determined over the temperature range 283.2 to 363.2 K using dynamic method. The experimental solubilities were regressed to obtain new Bromley‐Zemaitis model parameters. These newly obtained parameters were verified by predicting the quaternary system. A chemical model for the NH4Cl‐MgCl2‐AlCl3‐H2O system has been established with the OLI platform. All the results generated from this study will provide the theoretical basis for Mg‐Al spinel production. The high quality Mg‐Al spinel was prepared by calcination of precursor from 773.2 to 1273.2 K, and the NH4Cl was successfully recovered through the common ion effect of MgCl2‐AlCl3 addition. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1855–1867, 2013  相似文献   

19.
Ethylene polymerization catalysts have been prepared by grafting chromium(III) acetylacetonate onto AlSBA-15 (Si/Al = ∞, 156, 86 and 30) mesoporous materials. A combination of XRD, nitrogen adsorption, TEM, ICP-atomic emission spectroscopy, H2-TPR, TGA, UV–vis and FT-IR spectroscopy, were used to characterize the prepared Cr–AlSBA-15 catalysts. By reducing the Si/Al ratio of the AlSBA-15 supports increases the amount of chromium anchored, promotes the stabilization of chromium species as chromate and decreases the reduction temperature of Cr6+ ions determined by H2-TPR. Attachment of Cr species onto AlSBA-15 surface results from the interaction of hydroxyl groups with the acetylacetonate ligands through H-bonds. On the contrary, a ligand exchange reaction may occur over siliceous SBA-15.The polymerization activity of Cr–AlSBA-15 catalysts is significantly improved by increasing aluminium content of the AlSBA-15 supports. Particularly, the chromium catalyst prepared with AlSBA-15 (Si/Al = 30) support is almost four times more active than a conventional Cr/SiO2 Phillips catalyst. Polymers obtained with all the catalysts showed melting temperatures, bulk densities and high load melt indexes indicating the formation of linear high-density polyethylene.  相似文献   

20.
Poly(methyl methacrylate) (PMMA) was synthesized by activator regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) of MMA in ionic liquid‐based microemulsion with polyoxyethylene sorbitan monooleate (Tween 80) as surfactant. The polymerization was carried out at 25°C with CCl4 as initiator, FeCl3·6H2O/N,N,N′,N′‐tetramethyl‐1,2‐ethanediamine (TMEDA) as catalyst complex in the presence of reducing agent ascorbic acid (VC). The polymerization kinetics showed the feature of controlled/″living″ process as evidenced by a linear first‐order plot. The well‐controlled polymers were obtained with narrow polydispersity indices and the ionic liquid‐based microemulsions were transparent with a particle size less than 30 nm. The obtained polymer was characterized by 1H NMR and gel permeation chromatography. The chain extension was successfully achieved by the obtained PMMA macroinitiator/FeCl3·6H2O/TMEDA/VC initiator system based on ARGET ATRP method. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号