首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiwalled carbon nanotube (MWCNT)‐filled polycarbonate (PC)/styrene–acrylonitrile (SAN) blends with a wide range of blend compositions were prepared by melt mixing in a rotational rheometer, and the effect of SAN on the electrical properties of the PC/MWCNT composites was studied. The structure/electrical property relationship was investigated and explained by a combination of MWCNT localization and blend morphology. Transmission electron micrographs showed selective localization of MWCNTs in the PC phase, regardless of the blend morphology. When the SAN concentration was 10–40 wt %, which corresponded to sea‐island (10–30 wt %) and cocontinuous (40 wt %) blend morphologies (PC was continuous in both structures), the electrical resistivity decreased with increases in the SAN content. The concept of an effective volume concentration of MWCNTs was used to explain this effect. When the SAN concentration was 70 wt % or higher, the electrical resistivity was very high because MWCNTs were confined in the isolated PC particles. In addition, SAN was replaced by other polymers [polystyrene, methyl methacrylate/styrene, and poly(methyl methacrylate)]; these yielded similar blend morphologies and MWCNT localization and showed the generality of the concept of effective concentration in explaining a decrease in the electrical resistivity upon the addition of a second polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

2.
Multiwalled carbon nanotube (MWCNT)/epoxy composites are prepared, and the characteristics and morphological properties are studied. Scanning electron microscopy microphotographs show that MWCNTs are dispersed on the nanoscale in the epoxy resin. The glass‐transition temperature (Tg) of MWCNT/epoxy composites is dramatically increased with the addition of 0.5 wt % MWCNT. The Tg increases from 167°C for neat epoxy to 189°C for 0.5 wt % CNT/epoxy. The surface resistivity and bulk resistivity are decreased when MWCNT is added to the epoxy resins. The surface resistivity of CNT/epoxy composites decreases from 4.92 × 1012 Ω for neat epoxy to 3.03 × 109 Ω for 1 wt % MWCNT/epoxy. The bulk resistivity decreases from 8.21 × 1016 Ω cm for neat epoxy to 6.72 × 108 Ω cm for 1 wt % MWCNT/epoxy. The dielectric constant increases from 3.5 for neat epoxy to 5.5 for 1 wt % MWCNT/epoxy. However, the coefficient of thermal expansion is not affected when the MWCNT content is less than 0.5 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1272–1278, 2007  相似文献   

3.
In this study, relatively large amounts of polypropylene (PP) and ethylene–propylene–diene (EPDM) were melt‐mixed with multiwalled carbon nanotubes (MWCNTs). Although the melt‐compounding method has many advantages, the uniform dispersion of carbon nanotubes in the polymer matrix is still the most challenging task. Because the electrical conductivity of composites is strongly influenced by the filler's state of dispersion and the extent of filler breakage during processing, the effects of the viscosity and processing conditions, such as the mixing time, rotor speed, and cooling rate, on the surface resistivity were studied. The PP/MWCNT nanocomposites displayed a high dependence of surface resistivity on the cooling rate, and the EPDM/MWCNT nanocomposites displayed a higher surface resistivity at the same content of MWCNTs and less dependence of surface resistivity on the cooling rate compared with PP/MWCNT nanocomposites. The increased surface resistivity of the EPDM/MWCNT nanocomposites was observed when EPDM with higher viscosity was used to prepare the EPDM/MWCNT nanocomposites. By increasing the rotor speed, lower surface resistivity was obtained in the PP/MWCNT nanocomposites. However, by increasing the rotor speed, a higher surface resistivity was obtained in the EPDM/MWCNT nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
The polypropylene‐grafted multiwalled carbon nanotubes (PP‐MWCNTs) were produced from the reaction of PP containing the hydroxyl groups and MWCNTs having 2‐bromoisobutyryl groups. The PP‐MWCNTs had a significantly rougher surface than the original MWCNTs. PP‐MWCNTs had PP layers of thickness 10–15 nm on the outer walls of the MWCNTs. PP/PP‐MWCNT composites and PP/MWCNT composites were prepared by solution mixing in o‐xylene. Unlike PP/MWCNT composites, PP‐MWCNTs were homogeneously dispersed in the PP matrix. As a consequence, the thermal stability and conductivity of PP/PP‐MWCNT composites were dramatically improved even if only 1 wt % of PP‐MWNTs was added to the PP matrix. The good miscibility of PP and PP‐MWCNTs plays a critical role in the formation of the homogeneous composites and leads the high thermal stability and conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Multi‐walled carbon nanotubes (MWCNTs), surface‐treated via chemical functionalization, i.e., oxidation and amidation, were used to reinforce diglycidylether of bisphenol F (DGEBF) epoxy resin. The effects of the functionalization on the dispersion stability, rheological properties, and fracture toughness of DGEBF/MWCNT composites were investigated. The dispersion homogeneity of the MWCNTs in the epoxy matrix improved after functionalization. In addition, isothermal rheology measurements revealed that the DGEBF/dodecyl amine‐functionalized MWCNT (D‐MWCNT) composite had a longer gel time and higher activation energy of cross‐linking than the DGEBF/acid‐treated MWCNT (A‐MWCNT) composite. The fracture toughness of the former was also significantly higher than that of the latter; this resulted from the relatively high dispersion stability of the D‐MWCNTs in the epoxy matrix, owing to the presence of alkyl groups on the D‐MWCNT surface. POLYM. ENG. SCI., 55:2676–2682, 2015. © 2015 Society of Plastics Engineers  相似文献   

6.
A mixed fill system of multiwalled carbon nanotubes (MWCNT) and hydroxylated MWCNT (HO‐MWCNT) in a poly(vinylidene fluoride) (PVDF) matrix was investigated to improve nanotube dispersion and enhance electrical percolation for the bulk nanocomposites. Nonfunctionalized MWCNT were blended at various concentrations into dimethylformamide solutions containing PVDF with 0, 5, or 10 wt % HO‐MWCNT. Composite samples prepared from these solutions were examined by four‐point probe resistivity measurements. The percolation threshold decreased from 0.49 wt % MWCNT in binary MWCNT/PVDF composites to 0.25 wt % for ternary composites containing MWCNT/HO‐MWCNT/PVDF, with either 5 or 10 wt % HO‐MWCNT. In the case of the ternary composite with 10 wt % HO‐MWCNT, the lowest fill percent of MWCNT (0.25 wt %) measured a conductivity that was three orders of magnitude higher than the binary MWCNT/PVDF composite containing twice the concentration of MWCNT (0.5 wt %). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Original multiwalled carbon nanotubes (O‐MWCNTs) and aminofunctionalized ethylenediamine‐treated multiwalled carbon nanotubes (MWCNTs‐EDA) were mixed with bismaleimide (BMI) resin to prepare O‐MWCNT/BMI and MWCNT‐EDA/BMI composites, respectively. Raman spectroscopy, thermogravimetric analysis, and infrared spectroscopy were used to investigate the influence of aminofunctionalization on the multiwalled carbon nanotube (MWCNT) framework. Dynamic mechanical analysis, scanning electron microscopy images of the fractured surface, and field emission scanning electron microscopy of the worn surface were used to determine the possible friction and wear mechanisms of the system. The MWCNT‐EDA/BMI composite exhibited a higher friction coefficient value and a lower wear loss rate value than the O‐MWCNT/BMI composite, which was attributed to the larger number of defects caused by the aminofunctionalization of the MWCNTs, the stronger interfacial adhesion formed between the MWCNTs‐EDA and the BMI resin, and the better dispersive state of the MWCNTs‐EDA in the BMI matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Amino‐functionalization of multiwalled carbon nanotubes (MWCNTs) was carried out by grafting triethylenetetramine (TETA) on the surfaces of MWCNTs through the acid–thionyl chloride way. The amino‐functionalized MWCNTs show improved compatibility with epoxy resin and, as a result, more homogenous dispersion in the matrix. The mechanical, optical, and thermal properties of the amino‐functionalized MWCNT/epoxy composites were also investigated. It was found that introducing the amino‐functionalized MWCNTs into epoxy resin greatly increased the charpy impact strength, glass transition temperature, and initial decomposing temperature of cured epoxy resin. In addition, introducing unfunctionalized MWCNTs into epoxy resin was found greatly depressing the light transmission properties, which would affirmatively confine the application of the MWCNTs/epoxy composites in the future, while much higher light transmittance than that of unfunctionalized MWCNTs/epoxy composites was found for amino‐functionalized MWCNTs/epoxy composites. SEM of the impact cross section and TEM of ultrathin film of the amino‐functionalized MWCNTs/epoxy composites showed that the amino‐functionalized MWCNTs were wetted well by epoxy matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 97–104, 2006  相似文献   

9.
A new compatibilizer [P(GMA‐co‐VCz) copolymer] containing carbazole moiety and reactive epoxide group, which can functionalize multiwalled carbon nanotubes (MWCNTs) for making superior epoxy composites, was prepared by a simple one‐pot free radical polymerization. The designed compatibilizer could noncovalently functionalize multiwalled carbon nanotube (MWCNTs) via π‐π interaction as evidenced from fluorescence, Raman, and FTIR spectra analysis, and efficiently disperse MWCNTs in organic solvents. TEM images suggest a good wrapping of P(GMA‐co‐VCz) on MWCNTs surface. P(GMA‐co‐VCz) functionalized MWCNTs were more homogeneously dispersed in epoxy matrix than the case without compatibilizer, indicating that the compatibilizer improves the compatibility between MWCNTs and epoxy resin. In addition, the presence of epoxide groups in compatibilizer could generate covalent bonds with the epoxy matrix and improve the interface interaction between MWCNTs and epoxy matrix. As a result, mechanical and electrical properties of the epoxy composites with compatibilizer were largely improved as compared with those of composites without compatibilizer. The addition of as little as 0.15 wt % of MWCNTs to epoxy matrix affords a great increase of 40% in storage modulus and 52.5% in elongation at break. Furthermore, a sharp decrease of almost 9 orders of magnitude in volume resistivity of epoxy composite is observed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45022.  相似文献   

10.
The toughness of cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (ERL‐4221) has been improved by using multiwalled carbon nanotubes (MWCNTs) treated by mixed acids. The MWCNT/ERL‐4221 composites were characterized by Raman spectroscopy and their mechanical properties were investigated. A significant increase in the tensile strength of the composite from 31.9 to 55.9 MPa was obtained by adding only 0.05 wt % of MWCNTs. And a loading of 0.5 wt % MWCNTs resulted in an optimum tensile strength and cracking energy, 62.0 MPa and 490 N cm, respectively. Investigation on the morphology of fracture surface of the composites by field emission scanning electron microscopy demonstrated the crack pinning‐front bowing and bridging mechanisms of toughening. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Both epoxy resin and acid‐modified multiwall carbon nanotube (MWCNT) were treated with 3‐isocyanatopropyltriethoxysilane (IPTES). Scanning electron microscopy (SEM) and transmission electronic microscope (TEM) images of the MWCNT/epoxy composites have been investigated. Tensile strength of cured silane‐modified MWCNT (1.0 wt %)/epoxy composites increased 41% comparing to the neat epoxy. Young's modulus of cured silane‐modified MWCNT (0.8 wt %)/epoxy composites increased 52%. Flexural strength of cured silane‐modified MWCNT (1.0 wt %)/epoxy composites increased 145% comparing to neat epoxy. Flexural modulus of cured silane‐modified MWCNT (0.8 wt %)/epoxy composites increased 31%. Surface and volume electrical resistance of MWCNT/epoxy composites were decreased with IPTES‐MWCNT content by 2 orders and 6 orders of magnitude, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
This study investigates the effect of the thiol‐ene click reaction on thermal conductivity and shear strength of the epoxy composites reinforced by various silane‐functionalized hybrids of sulfhydryl‐grafted multi‐walled carbon nanotubes (SH‐MWCNTs) and vinyl‐grafted MWCNTs (CC‐MWCNTs). The results of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM) show that the sulfhydryl groups and vinyl groups are successfully grafted onto the surface of MWCNTs, after treatment of MWCNT with triethoxyvinylsilane and 3‐mercaptopropyltrimethoxysilane, respectively. Scanning electron microscopy (SEM), HotDisk thermal constant analyzer (HotDisk), optical microscope, and differential scanning calorimetry (DSC) are used to characterize the resultant composites. It is demonstrated that the hybrid of 75 wt % SH‐MWCNTs and 25 wt % CC‐MWCNTs has better dispersion and stability in epoxy matrix, and shows a stronger synergistic effect in improving the thermal conductivity of epoxy composite via the thiol‐ene click reaction with 2,2′‐azobis(2‐methylpropionitrile) as thermal initiator. Furthermore, the tensile shear strength results of MWCNT/epoxy composites and the optical microscopy photographs of shear failure section indicate that the composite with the hybrid MWCNTs has higher shear strength than that with raw MWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44579.  相似文献   

13.
The effects of different surfactants on the properties of multiwalled carbon nanotubes/polypropylene (MWCNT/PP) nanocomposites prepared by a melt mixing method have been investigated. Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as a means of noncovalent functionalization of MWCNTs to help them to be dispersed uniformly into the PP matrix. The effects of these surfactant‐treated MWCNTs on morphological, rheological, thermal, crystalline, mechanical, and electrical properties of MWCNT/PP composites were studied using field emission scanning electron microscopy, optical microscopy, rheometry, tensile, and electrical conductivity tests. It was found that the surfactant‐treatment and micromixing resulted in a great improvement in the state of dispersion of MWCNTs in the polymer matrix, leading to a significant enhancement of Young's modulus and tensile strength of the composites. For example, with the addition of only 2 wt % of SDS‐treated and NaDDBS‐treated MWCNTs, the Young's modulus of PP increased by 61.1 and 86.1%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Cellulose acetate (CA)‐based nanocomposites with various contents of neat multiwalled carbon nanotube (MWCNT) or acid‐treated one (MWCNT‐COOH) are prepared via melt‐compounding method and investigated their morphology, thermal stability, mechanical, and electrical properties. SEM microphotographs reveal that MWCNT‐COOHs are dispersed uniformly in the CA matrix, compared with neat MWCNTs. FTIR spectra support that there exists a specific interaction between carboxyl groups of MWCNT‐COOHs and ester groups of CA, indicating good interfacial adhesion between MWCNT‐COOHs and CA matrix. Accordingly, thermal stability and dynamic mechanical properties of CA/MWCNT‐COOH nanocomposites were higher than those of CA/MWCNT composites. On the contrary, electrical volume resistivities of CA/MWCNT‐COOH nanocomposites are found to be somewhat higher than those of CA/MWCNT composites, which is because of the deterioration of graphene structures for MWCNT‐COOHs and the good dispersion of MWCNT‐COOHs in the CA matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Poly(butylene succinate) (PBS)/pristine raw multiwalled carbon nanotube (MWCNT) composites were prepared in this work via simple melt compounding. Morphological observations indicated that the MWCNTs were well dispersed in the PBS matrix. Moreover, the incorporation of MWCNTs did not affect the crystal form of PBS as measured by wide‐angle X‐ray diffraction. The rheology, crystallization behaviors, and thermal stabilities of PBS/MWCNT composites were studied in detail. Compared with neat PBS, the incorporation of MWCNTs into the matrix led to higher complex viscosities (|η*|), storage modulus (G′), loss modulus (G″), shear thinning behaviors, and lower damping factor (tan δ) at low frequency range, and shifted the PBS/MWCNT composites from liquid‐like to solid‐like, which affected the crystallization behaviors and thermal stabilities of PBS. The presence of a very small quantity of MWCNTs had a significant heterogeneous‐nucleation effect on the crystallization of PBS, resulting in the enhancement of crystallization temperature, i.e., with the addition of 0.5 wt % MWCNTs, the values of Tc of PBS/MWCNT composites could attain to 90°C, about 6°C higher than that of neat PBS, whereas the values of Tc increased slightly with further increasing the MWCNTs content. The thermogravimetric analysis illustrated that the thermal stability of PBS was improved with the addition of MWCNTs compared with that of neat PBS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
We prepared macromer-grafted polymers (MGPs) containing suitable polymer side chains for improving solubility and pyrene units for improving adsorption on multiwalled carbon nanotube (MWCNT) surfaces, and demonstrated that these MGPs act as MWCNT solubilizers that improve solubility of MWCNTs in typically poor solvents such as alkanes and that improve flowability of polymer/MWCNT composites. The polydimethylsiloxane (PDMS)-MGPs, synthesized using PDMS macromers and pyrene-containing monomers, improved solubility of MWCNTs not only in chloroform but also in hexane, which is a poor solvent for MWCNTs. Moreover, the addition of PDMS-MGP-adsorbed MWCNTs (MWCNT/PDMS-MGPs) to epoxy resin monomers or polybutylene terephthalate (PBT) drastically reduced the viscosity of the obtained epoxy resin monomer/MWCNT/PDMS-MGP mixtures and PBT/MWCNT/PDMS-MGP composites in comparison to the epoxy resin monomer/MWCNT mixtures and PBT/MWCNT composites, respectively. The viscosity of PBT/MWCNT/PDMS-MGP composites including ?1 vol% of MWCNTs, in particular, was almost equal to that of pristine PBT.  相似文献   

17.
The microstructure, rheological and conductive properties of multi-walled carbon nanotube (MWCNT)/polycarbonate (PC) composites were investigated by positron annihilation lifetime spectroscopy, positron annihilation coincidence Doppler broadening (CDB), oscillatory rheometry and electrical resistivity for different MWCNT contents. A 10 orders of magnitude increase in electrical conductivity was achieved with very small quantities of MWCNTs. CDB was used to determine a percolation threshold value, which was in good agreement with the electrical conductivity and rheological measurements. The results showed that with increasing MWCNT content, the composites underwent a phase transition from insulating to conducting at room temperature, which was attributed to the formation of a MWCNT network. The effect of MMCNTs on the microstructure of MWCNT/PC composites has been studied by positron annihilation lifetime measurements. The results showed that the fractional free volume decreased because of the MWCNTs and the formation of conductive network. The effects of MWCNT filler on the atomic scale free volume and mechanical property of MWCNT/PC composites were also discussed.  相似文献   

18.
To shield undesirable electromagnetic waves caused by electronic devices and simultaneously resolve the flame safety of the electronic components, an electromagnetic interference (EMI) shielding material with excellent flame‐retardant properties is urgently needed. The synergistic effect of the intumescent flame retardant (IFR) and multiwalled carbon nanotubes (MWCNTs) for polystyrene (PS) nanocomposites prepared by melt blending was investigated. The results show that addition of certain amounts of IFRs facilitated the dispersion of MWCNTs in the PS matrix, and the percolation threshold of the MWCNTs in the PS matrix also decreased from 1.67 ± 0.05 to 1.29 ± 0.04 wt %. Moreover, the EMI shielding efficiencies (SEs) of the PS–MWCNT–IFR composites were consistently higher than those of the PS–MWCNT composites without the addition of the IFRs at the same MWCNT content; this indicated that the synergistic effect of the MWCNTs and IFRs effectively improved the EMI SE of the PS–MWCNT–IFR composites. Furthermore, the limiting oxygen index (LOI) testing results show that the LOI values of the PS–MWCNT composites were consistently higher than 27%; this indicated that the PS–MWCNT composites effectively met the needs of flame safety; this indicated that the PS–MWCNT–IFR composite is a novel and promising candidate for an ideal EMI shielding material with excellent flame‐retardant properties for today's electronic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45088.  相似文献   

19.
Different amounts of multiwalled carbon tubes (MWCNTs) were incorporated into an epoxy resin based on diglycidyl ether of bisphenol A and both epoxy precursor and composite were cured with 4,4′‐diamino diphenyl sulfone. Transmission and scanning electron microscopy demonstrated that the carbon nanotubes are dispersed well in the epoxy matrix. Differential scanning calorimetry measurements confirmed the decrease in overall cure by the addition of MWCNTs. A decrease in volume shrinkage of the epoxy matrix caused by the addition of MWCNTs was observed by pressure–volume–temperature measurements. Thermomechanical and dynamic mechanical analysis were performed for the MWCNT/epoxy composites, showing that the Tg was slightly affected, whereas the dimensional stability and stiffness are improved by the addition of MWCNTs. Electrical conductivity measurements of the composite samples showed that an insulator to conductor transition takes place between 0.019 and 0.037 wt % MWCNTs. The addition of MWCNTs induces an increase in both impact strength (18%) and fracture toughness (38%) of the epoxy matrix with very low filler content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Ethylene‐vinyl acetate copolymer (EVA) was melt‐mixed with multiwalled carbon nanotubes (MWCNTs) and organoclays, and the effects of simultaneous use of organoclays and MWCNTs on the surface resistivity and tensile properties of EVA nanocomposites were investigated. The surface resistivity of EVA/MWCNT nanocomposite with 1 phr of MWCNT is out of our measurement range (above 1012 Ω/square). With increasing content of organoclay from 0 to 3 phr, the surface resistivity of the EVA/MWCNT/organoclay nanocomposites with 1 phr MWCNT remains out of our measurement range. However, the surface resistivity of the nanocomposite decreases to 106 Ω/square with addition of 5 phr organoclay. The tensile properties of EVA/MWCNT/organoclay nanocomposites with 1 phr MWCNT and 5 phr organocaly are similar to those of EVA/MWCNT nanocomposites with 5 phr MWCNT except tensile modulus. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号