首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aim of the research presented was to develop a potential liver‐targeting prolonged‐circulation polymeric prodrug of doxorubicin (Dox) with a pH‐triggered drug release profile. In particular, linear dendritic block copolymers composed of polyamidoamine dendrimer (PAMAM) and poly(ethylene glycol) (PEG; number‐average molecular weight of 2000 g mol?1) with or without galactose (Gal) were synthesized. Dox was coupled to the copolymers via an acid‐labile hydrazone linker. These prodrugs, designated Gal‐PEG‐b‐PAMAM‐Doxn and mPEG‐b‐PAMAM‐Doxm, showed accelerated Dox release as the pH decreased from 8.0 to 5.6. Cytotoxicity of the prodrugs was lower than that of free Dox due to the gradual drug release nature. Compared to mPEG‐b‐PAMAM‐Doxm, Gal‐PEG‐b‐PAMAM‐Doxn showed rather high cytotoxicity against Bel‐7402, suggestive of its galactose receptor‐mediated enhanced tumor uptake. This galactose receptor‐mediated liver‐targeted profile was further confirmed by the prolonged retention time in hepatoma tissue monitored using magnetic resonance imaging. Gal‐PEG‐b‐PAMAM‐Doxn showed better in vivo antitumor efficacy than free Dox, suggesting its great potential as a polymeric antitumor prodrug. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
Methoxy poly (ethylene glycol)‐graft‐α, β‐poly (aspartic acid) derivatives (mPEG‐g‐PAA‐N3) were synthesized by sequential ring‐opening reaction of polysuccinimide (PSI) with mPEG‐NH2 (MW: 2000 Da), and 1‐azido‐3‐aminopropane, respectively. Then N2‐(hex‐5‐yne)‐diethylenetriamine‐tetra‐t‐butylacetate (DTTA‐der) was conjugated to mPEG‐g‐PAA‐N3 by click cycloaddition. After deprotection of carboxylic groups, mPEG‐g‐PAA‐DTTA macromolecular ligands were obtained. MPEG‐g‐PAA‐(DTTA‐Gd) complex nanomicelles were fabricated from mPEG‐g‐PAA‐DTTA and Gadolinium chloride. The formation of nanomicelles was confirmed by fluorescence spectrophotoscopy and particle size measurements. It was found that all the nanomicelles showed spherical shapes with core‐shell structures and narrow size distributions. Their sizes ranged from 50 to 80 nm, suggesting their passive targeting potential to tumor tissue. With the increase of graft degree (GD) of mPEG, the sizes of mPEG‐g‐PAA‐(DTTA‐Gd) nanomicelles showed a tendency to decrease. Compared with gadopentetate dimeglumine (Gd‐DTPA), mPEG‐g‐PAA‐(DTTA‐Gd) nanomicelles showed essential decreased cytotoxicity to KB cell line and enhanced T1‐weighted signal intensity, especially at low concentration of gadolinium (III), suggesting their great potentials as magnetic resonance imaging contrast agents. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
To enhance biocompatibility and physiological stability of hydrophobic MnO nanoparticles as contrast agent of T1‐weighted magnetic resonance imaging (MRI), dopamine‐functionalized poly(ethylene glycol) (PEG) was used to coat the surface of about 5 nm MnO nanoparticles. Although hydrophilic coating might decrease longitudinal relaxivity due to inhibiting the intimate contact between manganese of nanoparticle surface and proton in water molecules, higher longitudinal relaxivity was still maintained by manipulating the PEGylation degree of MnO nanoparticles. Moreover, in vivo MRI demonstrated considerable signal enhancement in liver and kidney using PEGylated MnO nanoparticles. Interestedly, the PEGylation induced the formation of about 120 nm clusters with high stability in storing and physiological conditions, indicating passive targeting potential to tumor and prolonged circulation in blood. In addition, the cytotoxicity of PEGylated MnO nanoparticles also proved negligible. Consequently, the convenient PEGylation strategy toward MnO nanoparticles could not only realize a good “trade‐off” between hydrophilic modification and high longitudinal relaxivity but also contribute additional advantages, such as passive targeting to tumor and long blood circulation, to MRI diagnosis of tumor. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42360.  相似文献   

5.
Magnetic resonance imaging (MRI) is widely used to identify different diseases. MRI contrast agents, used to enhance the MRI signal, have been studied extensively for precise diagnosis. Based on the advantages of macromolecular MRI contrast agents of higher contrast imaging ability and a longer cycle time, this article modified the most common micromolecular contrast agent (Gd‐diethylene triamine pentaacetic acid [DTPA]). 2 long saturated aliphatic chains were attached to both sides of DTPA. DTPA derivatives with 12, 14, and 16 carbon lengths were synthesized and chelated to Gd3+. 3 amphiphilic MRI contrast agents were obtained and their structures were characterized using mass spectrometry, 1H NMR, and Fourier transform infrared. Furthermore, the surface tension of the compounds was measured, and liposomes were prepared by mixing the synthesized amphiphilic molecules with egg lecithin and cholesterol. The assembly behavior of the liposomes was studied using transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential measurements. TEM showed that the liposomes possessed bilayer vesicle structures. The liposome size distribution determined by DLS was from 10 to 1000 nm, and as the aliphatic chain length increased, the polydispersity index (PDI) and zeta potential increased. No obvious changes in the PDI and zeta potential of the liposomes were observed after 5 days at room temperature, suggesting that they possess good stability.  相似文献   

6.
Macroporous poly(N‐isopropylacrylamide) (PNIPA) hydrogels were synthesized by free‐radical crosslinking polymerization in aqueous solution from N‐isopropylacrylamide monomer and N,N‐methylenebis (acrylamide) crosslinker using poly(ethylene glycol) (PEG) with three different number‐average molecular weights of 300, 600 and 1000 g mol?1 as the pore‐forming agent. The influence of the molecular weight and amount of PEG pore‐forming agent on the swelling ratio and network parameters such as polymer–solvent interaction parameter (χ) and crosslinking density (νE) of the hydrogels is reported and discussed. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying different molecular weights and compositions of PEG during polymerization. At a temperature below the volume phase transition temperature, the macroporous hydrogels absorbed larger amounts of water compared to that of conventional PNIPA hydrogels, and showed higher equilibrated swelling ratios in aqueous medium. Particularly, the unique macroporous structure provides numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to external temperature changes during the swelling and deswelling process. These macroporous PNIPA hydrogels may be useful for potential applications in controlled release of macromolecular active agents. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
A targeting gene carrier for cancer‐specific delivery was successfully developed through a “multilayer bricks‐mortar” strategy. The gene carrier was composed of adamantane‐functionalized folic acid (FA‐AD), an adamantane‐functionalized poly(ethylene glycol) derivative (PEG‐AD), and β‐cyclodextrin‐grafted low‐molecular‐weight branched polyethylenimine (PEI‐CD). Carriers produced by two different self‐assembly schemes, involving either precomplexation of the PEI‐CD with the FA‐AD and PEG‐AD before pDNA condensation (Method A) or pDNA condensation with the PEI‐CD prior to addition of the FA‐AD and PEG‐AD to engage host–guest complexation (Method B) were investigated for their ability to compact pDNA into nanoparticles. Cell viability studies show that the material produced by the Method A assembly scheme has lower cytotoxicity than branched PEI 25 kDa (PEI‐25KD) and that the transfection efficiency is maintained. These findings suggest that the gene carrier, based on multivalent host–guest interactions, could be an effective, targeted, and low‐toxicity carrier for delivering nucleic acid to target cells.  相似文献   

8.
The aim of the work reported here was to investigate temperature‐ and pH‐sensitive hydrogels of N‐isopropylacrylamide (NIPAM) and itaconic acid (IA) and their semi‐interpenetrating polymer networks (semi‐IPNs) with varying contents of poly(ethylene glycol) (PEG). The stimuli responsiveness, swelling behaviour and mechanical properties of the hydrogels and semi‐IPNs were studied in order to investigate the effect of various amounts of PEG. Pulsed‐gradient spin‐echo NMR experiments were carried out to investigate the diffusion process. The pH sensitivity increased with an increasing amount of PEG in the semi‐IPNs, while the overall rate of water uptake was diffusion‐controlled (n < 0.5). For certain PEG contents (5 and 10 wt%), the semi‐IPNs exhibited better mechanical properties than the poly(NIPAM‐co‐IA) copolymer. The calculated values of the self‐diffusion coefficients of water indicated facilitated diffusion of water through the system with increased amounts of PEG, while the self‐diffusion coefficients of a model compound, metoprolol tartrate, showed no significant dependence on the amount of PEG. According to the results obtained and compared to results reported in the literature, the investigated semi‐IPNs may have potential applications in the controlled release of macromolecular active agents such as proteins and peptides. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Recently there has been interest in developing imaging contrast media for magnetic resonance imaging (MRI) that contain biologically rare, magnetically active nuclei such as fluorine. In principle, fluorinated contrast agents can be used to generate highly selective 19F magnetic resonance images that can be superimposed over complimentary 1H magnetic resonance images to provide an anatomical context for the fluorinated contrast agent. Additionally, nanoparticles can be made to target various pathological sites via active and passive targeting mechanisms. In this study, fluorinated nanoparticles were produced using a free radical polymerization of vinyl formamide monomers with two different fluorinated monomers. The nanoparticles showed a clear, single 19F‐NMR signal. Additionally, surface amide groups were hydrolyzed to primary amines to yield additional surface reactivity. Fluorinated nanoparticles produced using a free‐radial polymerization method yield a new nanoparticle for 19F‐MRI applications with potential for facile functionalization. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
A one‐pot synthesis is developed for PEG600b‐poly(glycerol monoacrylate) (PEG600b‐PGA), by which folate and superparamagnetic iron oxide nanoparticles (SPIONs) are assembled to form folic acid‐conjugated magnetic nanoparticles (FA‐MNPs) as a tumor targeting system. The synthesis consists of a “click” reaction and atom transfer radical polymerization (ATRP) to obtain the well‐defined furan‐protected maleimido‐terminated PEG600b‐poly(solketal acrylate) (PEG600b‐PSA) copolymer. After deprotection, the key copolymer N‐maleimido‐terminated PEG600b‐PGA is successfully conjugated with thiol derivatives of folate and FITC, respectively. FA‐MNPs are developed by assembling of the resulting polymer FA‐PEG600b‐PGA with SPIONs, and characterized for their size, surface charge, and superparamagnetic properties. To investigate the cellular uptake of the nanoparticles by Hela cells and φ2 cells using fluoresce technique, FA‐FITC‐MNPs are also obtained by assembling of FA‐PEG600b‐PGA, FITC‐PEG600b‐PGA with SPIONs. Qualitative and quantitative determinations of FA‐FITC‐MNPs show that the particles specifically internalized to Hela cells. No significant cytotoxicity is observed for these two kinds of cell lines. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40405.  相似文献   

11.
Macromolecular Gd(III) complexes are advantageous over small molecular Gd(III) complexes in contrast enhanced magnetic resonance imaging (MRI) because of their prolonged blood circulation and preferential tumor accumulation. However, macromolecular contrast agents have not been approved for clinical applications because of the safety concerns related to their slow body excretion. Polydisulfide Gd(III) complexes have been designed and developed as biodegradable macromolecular MRI contrast agents to alleviate the concerns by facilitating the clearance of Gd(III) complexes from the body. These agents initially behave as macromolecular agents and result in superior contrast enhancement in the vasculature and tumor tissues. They can then be readily degraded in vivo into small molecular chelates that can rapidly excrete from the body via renal filtration after the MRI examinations. Various polydisulfide Gd(III) complexes have been prepared as biodegradable macromolecular MRI contrast agents. These agents have resulted in strong contrast enhancement in the vasculature and tumor tissue in animal models with minimal long-term tissue accumulation comparable to small molecular contrast agents. Polydisulfide Gd(III) complexes are promising for further clinical development as safe and effective biodegradable macromolecular MRI contrast agents for cardiovascular and cancer imaging. The review summarizes the chemistry and properties of polydisulfide Gd(III) complexes.  相似文献   

12.
Combining near infrared (NIR) luminescence and magnetic resonance (MR) contrasts in a crystal host is highly desirable for contrast agents in biomedical imaging technology, as it will enable multimodal imaging processes. In the present work, biocompatible luminescent and paramagnetic fluorapatite (FAp) nanoparticles were prepared via doping with neodymium (Nd3+) and gadolinium (Gd3+), respectively. While Nd3+‐doped FAp (Nd:FAp) exhibits dopant concentration‐dependent photoluminescence (PL) in the NIR spectral region, Gd3+‐doped FAp (Gd:FAp) shows paramagnetic behavior and strong transverse relaxation effects resulting in MR contrastive properties. Remarkably, multimodal co‐doped FAp (Nd:Gd:FAp) nanoparticles combine both properties in 1 single crystal enabling luminescence as well as MR contrast.  相似文献   

13.
The microcapsules in drug delivery systems can prevent degradation of drugs and help to control the release rate. To enhance the targeted delivery effect of the microcapsules to cancer cells, some specific ligands such as folic acid (FA) are necessarily further conjugated. Herein, covalent poly(allylamine hydrochloride) (PAH) multilayers were fabricated on CaCO3 microparticles under the cross‐linking of glutaraldehyde, which were further immobilized with different amount of FA molecules via the spacer of diamino terminated poly(ethylene glycol) (PEG). As a comparison study, four types of microcapsules, i.e., the PAH capsules, the PAH capsules grafted with PEG, and the PAH capsules conjugated with two different amount of FA via the PEG spacer were prepared. Their chemical and physical structures were confirmed by infrared spectroscopy, UV–vis spectroscopy and scanning electron microscopy. In vitro cell culture found that the cellular uptake of the PAH capsules grafted with PEG was reduced significantly compared with that of the pure PAH capsules. The FA‐modified microcapsules could be selectively delivered into HepG2 tumor cells which overexpress FA receptors but not into the endothelial cells. The number of HepG2 cells which ingested the FA‐conjugated capsules showed a positive correlation with FA amount. The results indicate that these FA conjugated capsules have a high selectivity to be delivered to tumor cells, endowing them with a larger opportunity functioning as targeted delivery vehicle for anticancer drugs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Novel pH‐responsive PEGylated hollow nanocapsules (HNCaps) were fabricated through a combination of distillation–precipitation copolymerization and surface thiol–ene ‘click’ grafting reaction. For this purpose, SiO2 nanoparticles were synthesized using the Stöber approach, and then modified using 3‐(trimethoxysilyl)propyl methacrylate (MPS). Afterward, a mixture of triethyleneglycol dimethacrylate (as crosslinker), acrylic acid (AA; as pH‐responsive monomer) and MPS‐modified SiO2 nanoparticles (as sacrificial template) was copolymerized using the distillation–precipitation approach to afford SiO2@PAA core–shell nanoparticles. The SiO2 core was etched from SiO2@PAA using HF solution, and the obtained PAA HNCaps were grafted with a thiol‐end‐capped poly(ethylene glycol) (PEG) through a thiol–ene ‘click’ reaction to produce PAA‐g‐PEG HNCaps. The fabricated HNCaps were loaded with doxorubicin hydrochloride (DOX) as a model anticancer drug, and their drug loading and encapsulation efficiencies as well as pH‐dependent drug release behavior were investigated. The anticancer activity of the drug‐loaded HNCaps was extensively evaluated using MTT assay against human breast cancer cells (MCF7). The cytotoxicity assay results as well as superior physicochemical and biological features of the fabricated HNCaps mean that the developed DOX‐loaded HNCaps have excellent potential for cancer chemotherapy. © 2020 Society of Chemical Industry  相似文献   

15.
Polymer nanoparticles (nps) have gained growing interest as carriers for anticancer drugs as they can target tumour tissues by both passive and active pathways. While the passive targeting mechanisms mainly rely on the small size of the carriers, active targeting requires surface modifications of the polymer core in order to introduce specific functionalities to actively recognize cancer cells. The present work proposes an innovative method for the preparation of surface‐functionalized nps based on the use of biodegradable polyester‐ and polyester/ether‐urethanes (PURs) embedding amino functionalities. Two polyurethanes were prepared, one based on just poly(?‐caprolactone) diol (PCL‐PUR) and the other based on both PCL diol and poly(ethylene glycol) (PEG) (70/30 ratio, PCL‐PEG‐PUR). Nanoparticles of small size ranging between 150 and 200 nm and negative ζ potential (ranging from ?18 mV to ?27 mV) were obtained. Functional groups were exposed post nps preparation as confirmed by X‐ray photoelectron spectroscopy, ninhydrin assay and 1H NMR, which evidenced a 24% tert‐butyloxycarbonyl cleavage for PCL‐PUR‐NH2 nps and 29% for PCL‐PEG‐PUR‐NH2 nps. The monoclonal antibody Herceptin (HER), which targets HER‐2 receptors, was coupled through ethyl(dimethylaminopropyl) carbodiimide/N‐hydroxysuccinimide (EDC/NHS) mediated chemistry. The optimal HER:NH2 ratio was determined to be 1:16 for the PEG‐containing PUR and 1:8 for PCL‐PUR. HER‐nps maintained the intrinsic cytotoxicity of the antibody, as shown by the ca 50% decrease of HER‐2‐expressing HeLa cell viability. The results indicate that our protocol for surface functionalization of PUR nps, based on surface exposure of previously inserted functional groups followed by covalent coupling of biomolecules, is suitable for the preparation of nps for active recognition of target cells. © 2016 Society of Chemical Industry  相似文献   

16.
A surface functionalization polypropylene was prepared by entrapment a copolymer of polypropylene‐grafted‐poly(ethylene glycol) into polypropylene. The effects of structure of copolymer, contact dies, and content of modifiers were studied. The results of attenuated total reflection infrared spectroscopy(ATR‐FTIR) and contact angle measurements indicated that PP‐g‐PEG could preferably diffuse onto the surface and effectively increase the hydrophilicity of PP. PPw‐g‐PEG with lower PEG contents, lower molecular weight of PPw and PEG had better selective enrichment on the surface of PP blend film. By grafting of PEG‐OH onto the MPP, PP macromolecular surface modifier with better solvent‐resistance than that of PEG can be achieved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Novel amphiphilic star‐shaped terpolymers comprised of hydrophobic poly(?‐caprolactone), pH‐sensitive polyaminoester block and hydrophilic poly(ethylene glycol) (Mn = 1100, 2000 g mol?1) were synthesized using symmetric pentaerythritol as the core initiator for ring‐opening polymerization (ROP) reaction of ?‐caprolactone functionalized with amino ester dendrimer structure at all chain ends. Subsequently, a second ROP reaction was performed by means of four‐arm star‐shaped poly(?‐caprolactone) macromer with eight ‐OH end groups as the macro‐initiator followed by the attachment of a poly(ethylene glycol) block at the end of each chain via a macromolecular coupling reaction. The molecular structures were verified using Fourier transform infrared and 1H NMR spectroscopies and gel permeation chromatography. The terpolymers easily formed core–shell structural nanoparticles as micelles in aqueous solution which enhanced drug solubility. The hydrodynamic diameter of these agglomerates was found to be 91–104 nm, as measured using dynamic light scattering. The hydrophobic anticancer drug curcumin was loaded effectively into the polymeric micelles. The drug‐loaded nanoparticles were characterized for drug loading content, encapsulation efficiency, drug–polymer interaction and in vitro drug release profiles. Drug release studies showed an initial burst followed by a sustained release of the entrapped drug over a period of 7days at pH = 7.4 and 5.5. The release behaviours from the obtained drug‐loaded nanoparticles indicated that the rate of drug release could be effectively controlled by pH value. Altogether, these results demonstrate that the designed nanoparticles have great potential as hydrophobic drug delivery carriers for cancer therapy. © 2015 Society of Chemical Industry  相似文献   

18.
Magnetic Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles were prepared by a novel and simple method: anthranilic acid assisted polymerization. The synthetic strategy involved two steps. First, Fe3O4 nanoparticles capped by anthranilic acid were obtained by a chemical precipitation method, and then the aniline and oxidant were added to the modified Fe3O4 nanoparticles to prepare well‐dispersed Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles. Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles exhibited a superparamagnetic behavior (i.e., no hysteresis loop) and high‐saturated magnetization (Ms = 21.5 emu/g). The structure of the composite was characterized by Fourier‐transform infrared spectra, X‐ray powder diffraction patterns, and transmission electron microscopy, which proved that the Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles were about 20 nm. Moreover, the thermal properties of the composite were evaluated by thermogravimetric analysis, and it showed excellent thermal stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1666–1671, 2006  相似文献   

19.
Poly{[α‐maleic anhydride‐ω‐methoxy‐poly(ethylene glycol)]‐co‐(ethyl cyanoacrylate)} (PEGECA) copolymers were prepared by radical polymerization of macromolecular poly(ethylene glycol) monomers (PEGylated) and ethyl 2‐cyanoacrylate in solvent. The structures of the copolymer were characterized by Fourier‐transform infrared (FTIR) and proton nuclear magnetic resonance (1H‐NMR). The morphology and size of the PEGECA nanoparticles prepared by nanoprecipitation techniques were investigated by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS) methods. The results show that the PEGECA can self‐assemble into highly stable nanoparticles in aqueous media, and inner core and outer shell morphology. The size of the nanoparticles was strongly influenced by the solvent character and the copolymer concentration in the organic solvents. A hydrophobic drug, ibuprofen, was effectively incorporated into the nanoparticles, which provides a delivery system for ibuprofen and other hydrophobic compounds. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
A family of newly synthesized monomethoxy (polyethylene glycol)‐poly (D ,L ‐lactic glycolic acid)‐ monomethoxy(polyethylene glycol) (MeO‐PEG‐poly (D ,L ‐lactic‐co‐glycolic acid)‐PEG‐OMe, PELGE) biodegradable polymers are candidates for intravenous nanoparticle drug, because of their merits of biocompatibility and blood compatibility, and their capability of escaping from the endothelium system (RES) and adsorbing proteins. In the current research, relationships between composition, cytotoxicity, and hemocompatibility of a series of blank PELGE nanoparticles were investigated. Cytotoxicity on Chang cell lines was investigated using the methyl thiazolyl tetrazolium (MTT) assay. Human and rabbit blood were used in studies of red blood cell hemolysis, whole blood clotting time, plasma recalcification profiles, and red blood cell form and appearance in whole blood. The results suggested that the molecular weight of PEG used in the synthesis of polymers influenced their characteristics. Generally, as the molecular weight of PEG increased, increased cytotoxicity and hemocompatibility were observed. The RGR (relative growth rate) of PELGE nanoparticles synthesized with PEG 550 was above 70%, while that of PELGE nanoparticles synthesized with PEG 750 and PEG 2000 was in the range of 55–105% and 36–87% respectively. For PELGE nanoparticles synthesized with PEG 550, most hemolysis values were in the range of 1–3%, while for PELGE nanoparticles synthesized with PEG 750 and PEG 2000 hemolysis values were 1–2% and below 2%, respectively. None of the nanoparticles caused changes in red blood cell form or appearance. Based on the results, 12 kinds of PELGE were chosen for further studies. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 113: 2933–2944, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号