首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(butylene succinate‐co‐butylene 2‐ethyl‐2‐methyl succinate) (PBSEMS) random copolymers were prepared with different comonomer compositions. The effects of shearing and comonomer content on the crystallization behavior of these copolymers were investigated at 80 °C. The thermal and morphological properties of the resulting samples were also discussed. The copolymers showed a longer induction time and a slower crystallization rate with increasing comonomer content. The promoting effect of shear on the overall crystallization behavior was more notable for those copolymers containing more 2‐ethyl‐2‐methyl succinic acid (EMSA) units. The melting temperature of ‘as‐prepared’ poly(butylene succinate) (PBS) was ca. 115 °C, while that of the copolymers varied from 112 to 102 °C. Higher comonomer contents in the copolymers gave rise to lower melting temperatures and broader melting peaks. In addition, the isothermally crystallized samples showed multiple melting endothermic behavior, the extent of which depended on the comonomer content. The copolymers showed different wide‐angle X‐ray diffraction (WAXD) patterns from that of neat PBS, depending on the comonomer content and shear applied during crystallization. With increasing comonomer content, the copolymers crystallized without shearing, showing the shifting of a diffraction peak to a higher angle, while those crystallized under shear did not show any peak shift. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Nonisothermal crystallization behaviors of both poly(butylene succinate) (PBS) and poly(ethylene glycol) (PEG) segments within PBS‐PEG (PBSEG) multiblock copolymers were investigated by differential scanning calorimetry (DSC). The nonisothermal crystallization kinetics of both PBS and PEG segments were analyzed by Avrami, Ozawa, and Mo methods. The results showed that both of Avrami and Mo methods were successful to describe the nonisothermal crystallization kinetics of PBS and PEG segments. The results of crystallization kinetics indicated that the crystallization rate of PBS segment decreased with PBS segment content and/or LPBS, while that of PEG segment decreased with Mn,PEG or FPEG. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40940.  相似文献   

3.
In this article, isothermal crystallization, melting behaviors, and spherulitic morphologies of high‐impact multiblock copolymers, comprising of PBS as hard segment and poly(1,2‐propylene succinate) (PPSu) as soft segment with hexamethylene diisocyanate as a chain extender, were investigated. The results from differential scanning calorimetry (DSC) suggest that the two segments of multiblock copolymers are miscible in amorphous region. The crystallization kinetics were analyzed by the Avrami equation. The effect of PBS segment length as well as the introduction of PPSu segment on the crystallization kinetics and melting bebaviors of block copolymers was studied. Both crystallization rate (G) and spherulitic growth rate (g) are markedly increased with the increase of PBS segment length or decreased with the incorporation of PPSu segment. All the multiblock copolymers show the multiple melting behaviors, whose position and area depend on PBS segment length and the presence of PPSu segment. The melting peaks shift to higher temperature region with increasing PBS segment length. Spherulitic morphologies of the multiblock copolymers after being isothermally crystallized were examined by polarized optical microscopy. It is the first time to investigate the effect of one segment length on crystallization bebavior of block copolymers based on a fixed weight ratio systematically. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Poly(ethylene succinate) (PES), poly(butylene succinate) (PBS), and PES‐rich copolyesters were synthesized using an effective catalyst, titanium tetraisopropoxide. PES was blended with minor amounts of PBS for the comparison. The compositions of the copolyesters and the blends were determined from NMR spectra. Their thermal properties were studied using a differential scanning calorimeter (DSC), a temperature modulated DSC (TMDSC), and a thermogravimetric analyzer. No significant difference exists among the thermal stabilities of these polyesters and blends. For the blends, the reversible curves of TMDSC showed a distinct glass‐rubber transition temperature (Tg), however, the variation of the Tg values with the blend compositions was small. Isothermal crystallization kinetics and the melting behavior after crystallization were examined using DSC. Wide‐angle X‐ray diffractograms (WAXD) were obtained for the isothermally crystallized specimens. The results of DSC and WAXD indicate that the blends have a higher degree of crystallinity and a higher melting temperature than those of the corresponding copolymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The results obtained for poly(butylene succinate) (PBS) after 60Co γ‐ray irradiation, studied by wide‐angle X‐ray diffraction (WAXD), differential scanning calorimeter (DSC) and polarizing optical microscopy (POM), revealed that the degree of crystallinity, melting temperature and enthalpy decreased with increasing irradiation dose, but that the crystal structure of PBS did not vary when compared to non‐irradiated PBS. By using Scherrer equation, small changes occurred in the crystal sizes of L020, L110 and L111. The spherulitic morphology of PBS was strongly dependent on irradiation dose and changed significantly at higher irradiation dosages. The crystallization kinetics of PBS indicated that the Avrami exponent (n) for irradiated PBS was reduced to 2.3, when compared to non‐irradiated PBS (3.3). Copyright © 2004 Society of Chemical Industry  相似文献   

6.
Blends of poly(L ‐lactic acid) (PLA) and poly(butylene succinate) (PBS) were prepared with various compositions by a melt‐mixing method and the phase behavior, miscibility, and morphology were investigated using differential scanning calorimetry, wide‐angle X‐ray diffraction, small‐angle X‐ray scattering techniques, and polarized optical microscopy. The blend system exhibited a single glass transition over the entire composition range and its temperature decreased with an increasing weight fraction of the PBS component, but this depression was not significantly large. The DSC thermograms showed two distinct melting peaks over the entire composition range, indicating that these materials was classified as semicrystalline/semicrystalline blends. A depression of the equilibrium melting point of the PLA component was observed and the interaction parameter between PLA and PBS showed a negative value of ?0.15, which was derived using the Flory–Huggins equation. Small‐angle X‐ray scattering revealed that, in the blend system, the PBS component was expelled out of the interlamellar regions of PLA, which led to a significant decrease of a long‐period, amorphous layer thickness of PLA. For more than a 40% PBS content, significant crystallization‐induced phase separation was observed by polarized optical microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 647–655, 2002  相似文献   

7.
With the help of differential scanning calorimeter (DSC), the basic thermal behaviors, nonisothermal crystallization kinetics, and subsequent melting behaviors of poly(butylene succinate) (PBS) and its copolyester (PBSTMA) modified with trimellitic imide units were investigated in this paper. The DSC thermograms of PBS and PBSTMA showed that the crystallization behaviors of PBS were affected seriously because of the addition of a small quantity of trimellitic imide units. The nonisothermal crystallization processes of them were represented by the Avrami equation modified by Jeziorny and the method developed by Ozawa. After that, the conception of “crystallization rate coefficient (CRC)” introduced by Khanna was employed. The values of CRC for PBS and PBSTMA are 174.6 and 88.2 h–1, respectively. At the end of this paper, the melting behaviors of PBS and PBSTMA after being cooled from 130 to 30°C at different cooling rate were studied in detail. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2493–2499, 2006  相似文献   

8.
A series of novel poly[(butylene succinate)‐co‐diolisobutyl]‐[ polyhedral oligomeric silsesquioxane] (PBS‐POSS) copolyesters have been synthesized for the first time directly from diacid and diols via melting polycondensation. Both PBS and POSS segments crystallized as revealed by X‐ray diffraction, and the crystallization of PBS was found to be retarded by the incorporation of POSS into PBS chains based on differential scanning calorimetry and rheological results. Moreover, the copolyester containing 3 mol% POSS formed organogels in chloroform by the treatment of shear flow and was more thermally stable than the pristine sample, due to formation of a physically crosslinked network caused by the crystallization of POSS into crystals of larger sizes. © 2013 Society of Chemical Industry  相似文献   

9.
Long‐chain branched poly(butylene succinate) were synthesized through a two‐step process of esterification and polycondensation, using 1,2,4‐butanetriol (1,2,4‐BT) as a long‐chain branching agent. The effect of long‐chain branches on the crystallization behaviors, rheological properties, and tensile properties was investigated systematically. The results of differential scanning calorimetry and polarized optical microscopy showed that with the increasing of 1,2,4‐BT segments, the crystallization temperatures and glass transition temperatures increase slightly, while the relative crystallinity degree decreases gradually. Also, the double‐banded extinction patterns with periodic distance along the radial direction were observed in the spherulites of long‐chain branched poly(butylene succinate), similar to that of linear poly(butylene succinate) (PBS). The result of wide‐angle X‐ray diffraction indicated that the incorporation of 1,2,4‐BT segments had little effect on the crystal structure of PBS. However, based on data from rheology and tensile testing, the viscoelastic properties of long‐chain branched PBS under shear flow were different from the linear PBS. For example, the complex viscosities, storage modulus, and loss modulus of long‐chain branched PBS at low frequency were significantly enhanced in comparison with those of linear PBS. In addition, long‐chain branched PBS showed higher tensile strength than that of linear PBS without notable decrease in the elongation at break when compared with linear PBS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The kinetics of the isothermal crystallization process from the melt of pure poly(butylene succinate)‐co‐(butylene carbonate) (PBS‐co‐BC) and its blends with cellulose acetate butylate (CAB) (10–30 wt%) was studied by differential scanning calorimetry (DSC) and the well‐known Avrami equation. In the blends, the overall crystallization rate of PBS‐co‐BC became slower with increasing CAB content. The equilibrium melting temperature ( ) of PBS‐co‐BC decreased with increasing CAB content, which was similar to that with other miscible crystalline/amorphous polymer blends. The slower crystallization kinetics of PBS‐co‐BC in the blends was explicable in terms of a diluent effect of the CAB component. By application of Turnbull–Fisher kinetic theory for polymer–diluent blend systems, the surface free energy (σe) of pure PBS‐co‐BC and of the blends was obtained, indicating that the blend with CAB resulted in a decrease in the surface free energy of folding of PBS‐co‐BC lamellar crystals. Copyright © 2006 Society of Chemical Industry  相似文献   

11.
聚丁二酸丁二醇酯的等温结晶动力学研究   总被引:2,自引:0,他引:2  
采用差示扫描量热仪(DSC)对聚丁二酸丁二醇酯(PBS)的等温结晶动力学进行了研究,并用Avrami方程对实验数据进行了量化分析。研究结果表明:在等温结晶时,PBS倾向于以均相成核的三维生长方式结晶,并通过偏光显微镜进行了验证;同时,随着结晶温度的升高,PBS的结晶速率常数K值下降,半结晶时间t1/2延长。  相似文献   

12.
Characterization of poly(butylene adipate‐co‐succinate) (PBAS)/poly(butylene terephthalate) (PBT) copolyesters resulting from the intermolecular ester‐exchange reaction between molten PBAS and PBT have been analyzed using 1H‐NMR spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, and total organic carbon lab analyzer. Using the assignment of proton resonance due to homogeneous and heterogeneous dyads, the average block lengths were investigated over the entire range of copolymer composition. A decrease in melting temperature was observed with the increase of a terephthalate unit in the composition. The result of X‐ray diffraction curve matches well with that of average block length and thermal property. When a rich component is crystallized, the poor component is excluded completely in a crystal formation. The biodegradability in copolyesters also depended on the terephthalate unit in the composition and average block length of the aromatic unit. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 593–608, 1999  相似文献   

13.
Silica nanoparticles and poly(butylene succinate) (PBS) nanocomposites were prepared by a melt‐blending process. The influence of silica nanoparticles on the nonisothermal crystallization behavior, crystal structure, and mechanical properties of the PBS/silica nanocomposites was investigated. The crystallization peak temperature of the PBS/silica nanocomposites was higher than that of neat PBS at various cooling rates. The half‐time of crystallization decreased with increasing silica loading; this indicated the nucleating role of silica nanoparticles. The nonisothermal crystallization data were analyzed by the Ozawa, Avrami, and Mo methods. The validity of kinetics models on the nonisothermal crystallization process of the PBS/silica nanocomposites is discussed. The approach developed by Mo successfully described the nonisothermal crystallization process of the PBS and its nanocomposites. A study of the nucleation activity revealed that the silica nanoparticles had a good nucleation effect on PBS. The crystallization activation energy calculated by Kissinger's method increased with increasing silica content. The modulus and yield strength were enhanced with the addition of silica nanoparticles into the PBS matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Poly (butylene succinate) (PBS) nanocomposites with titanium dioxide nanotubes (TNTs) or hydroxyapatite nanorods (HAP) were prepared, and the effect of the nano‐inorganics on the nonisothermal crystallization and melting properties of PBS were studied in detail by differential scanning calorimeter. The nonisothermal crystallization kinetics of PBS and its nanocomposites were analyzed by the Avrami, Ozawa, and Mo methods. It is found that the presence of TNTs increases the crystallization temperature and rate of PBS composites, but decreases the crystallization activation energy and crystallinity. By comparison, the crystallization rate of the PBS composite is decreased with the addition of HAP. The melting, recrystallization, and remelting mechanism results in the formation of two melting endothermic peaks during the melting process of neat PBS and its nanocomposites. The model proposed by Mo could successfully describe the nonisothermal crystallization process of PBS and its nanocomposites. At a given crystallinity, the F(t) values decrease in the order of PBS/HAP, PBS, and PBS/TNTs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40335.  相似文献   

15.
Biodegradable polyesters such as poly(butylene succinate) (PBS), poly(propylene succinate) (PPS), and poly(butylene succinate‐co‐propylene succinate)s (PBSPSs) were synthesized respectively, from 1,4‐succinic acid with 1,4‐butanediol and 1,3‐propanediol through a two‐step process of esterification and polycondensation in this article. The composition and physical properties of both homopolyesters and copolyesters were investigated via 1H NMR, DSC, TGA, POM, AFM, and WAXD. The copolymer composition was in good agreement with that expected from the feed composition of the reactants. The melting temperature (Tm), crystallization temperature (Tc), crystallinity (X), and thermal decomposition temperature (Td) of these polyesters decreased gradually as the content of propylene succinate unit increased. PBSPS copolyesters showed the same crystal structure as the PBS homopolyester. Besides the normal extinction crosses under the polarizing optical microscope, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Partially crosslinked poly(β‐hydroxybutyrate‐co‐β‐hydroxyvalerate)/poly(butylene succinate) (PHBV/PBS) and poly(β‐hydroxybutyrate)/poly(butylene succinate) (PHB/PBS) blends were prepared by melt compounding with dicumyl peroxide. The effect of partial crosslinking on crystallization of the PHBV/PBS and PHB/PBS blends was investigated systematically. Differential scanning calorimetry results showed that the overall crystallization rates of both PHBV and PBS in their blends were enhanced considerably by the partial crosslinking. Similar results were also detected in the PHB/PBS blends. The polarized optical microscope observation displayed that the nuclei density of PHBV was increased while the spherulitic morphology did not change much. Conversely, the PBS spherulites turned into cloud‐like morphology after the partial crosslinking which is a result of the decrease in spherulite size, the reduction in interspherulite distance and the interconnection of fine PBS domains. Wide angle X‐ray diffraction patterns confirmed the enhancement in crystallization of the PHBV/PBS blends after the partial crosslinking without modification on crystalline forms of the PHBV and PBS components. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41020.  相似文献   

17.
A series of biodegradable aliphatic‐aromatic copolyester, poly(butylene terephthalate‐co‐butylene adipate‐co‐ethylene terephthalate‐co‐ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4‐butanediol (BG) and ethylene glycol (EG) by direct esterification and polycondensation. The nonisothermal crystallization behavior of PBATE copolyesters was studied by the means of differential scanning calorimeter, and the nonisothermal crystallization kinetics were analyzed via the Avrami equation modified by Jeziorny, Ozawa analysis and Z.S. Mo method, respectively. The results show that the crystallization peak temperature of PBATE copolyesters shifted to lower temperature at higher cooling rate. The modified Avrami equation could describe the primary stage of nonisothermal crystallization of PBATE copolyesters. The value of the crystallization half‐time (t1/2) and the crystallization parameter (Zc) indicates that the crystallization rate of PBATE copolyesters with more PTA content was higher than that with less PTA at a given cooling rate. Ozawa analysis was not suitable to study the nonisothermal crystallization process of PBATE copolyesters, but Z.S. Mo method was successful in treatingthis process. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
A series of biodegradable isosorbide‐based copolyesters poly(butylene succinate‐co‐isosorbide succinate‐co‐polyethyleneoxide succinate) (PBxIyEzS) were synthesized via bulk polycondensation in the presence of dimethyl succinate (DMS), 1,4‐butanediol (BDO), poly(ethylene glycol) (PEG) and isosorbide (ISO). The crystallization behaviors, crystal structure and spherulite morphology of the copolyesters were analyzed by differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and polarizing optical microscopy (POM), respectively. The results indicate that the crystallization behavior of the copolyesters was influenced by the content of isosorbide succinate (IS) and polyethyleneoxide succinate (PEOS) units, which further tuned the mechanical and biodegradable properties of the copolyesters. The PBxIyEzS copolyesters, compared to pure poly(butylene succinate), showed lower crystallization temperature, melting temperature, degree of crystallinity and degradation rate while a significant increase in glass transition temperature with increasing isosorbide content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
In this paper, two different analytical methods were applied to investigate nonisothermal crystallization behavior of copolyesters prepared by melting transesterification processing from bulk polyesters involving poly (butylene terephthalate) (PBT) and ternary amorphous random copolyester poly(ethylene terephthalate‐co‐isophthalate‐co‐sebacate) (PETIS). The results show that the half‐time of crystallization of copolyesters depended on the reaction time and decreased with the content of ternary polyesters in the amorphous segment. The modified Avrami model describes the nonisothermal crystallization kinetics very well. The values of the Avrami exponent range from 2.2503 to 3.7632, and the crystallization kinetics constant ranges from 0.0690 to 0.9358, presenting a mechanism of three‐dimensional spherulitic growth with heterogeneous nucleation. Ozawa analysis, however, failed to describe the nonisothermal crystallization behavior of copolyesters, especially at higher cooling rate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1232–1238, 2003  相似文献   

20.
Low‐molecular‐weight HOOC‐terminated poly(butylene adipate) prepolymer (PrePBA) and poly(butylene succinate) prepolymer (PrePBS) were synthesized through melt‐condensation polymerization from adipic acid or succinic acid with butanediol. The catalyzed chain extension of these prepolymers was carried out at 180–220°C with 2,2′‐(1,4‐phenylene)‐bis(2‐oxazoline) as a chain extender and p‐toluenesulfonic acid (p‐TSA) as a catalyst. Higher molecular weight polyesters were obtained from the catalyzed chain extension than from the noncatalyzed one. However, an improperly high amount of p‐TSA and a high temperature caused branching or a crosslinking reaction. Under optimal conditions, chain‐extended poly(butylene adipate) (PBA) with a number‐average molecular weight up to 29,600 and poly(butylene succinate) (PBS) with an intrinsic viscosity of 0.82 dL/g were synthesized. The chain‐extended polyesters were characterized by IR spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, wide‐angle X‐ray scattering, and tensile testing. DSC, wide‐angle X‐ray scattering, and thermogravimetric analysis characterization showed that the chain‐extended PBA and PBS had lower melting temperatures and crystallinities and slower crystallization rates and were less thermally stable than PrePBA and PrePBS. This deterioration of their properties was not harmful enough to impair their thermal processing properties and should not prevent them from being used as biodegradable thermoplastics. The tensile strength of the chain‐extended PBS was about 31.05 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号