首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel monomer diacid, 6,6′‐methylenebis(2‐oxo‐2H‐chromene‐3‐carboxylic acid), was synthesized and used in a direct polycondensation reaction with various aromatic diamines in N‐methyl‐2‐pyrrolidone solution containing dissolved LiCl and CaCl2, using triphenyl phosphite and pyridine as condensing agents to give a series of novel heteroaromatic polyamides containing photosensitive coumarin groups in the main chain. Polyamide properties were investigated by DSC, TGA, GPC, wide‐angle X‐ray scattering, viscosity, and solubility measurements. The copolymers were soluble in aprotic polar solvents, and their inherent viscosities varied between 0.49 and 0.78 dL g?1. The weight‐average and number‐average molecular weights, measured by gel permeation chromatography, were 27,500–43,900 g mol?1 and 46,500–66,300 g mol?1, respectively, and polydispersities in the range of 1.48–1.69. The aromatic polyamides showed glass‐transition temperatures (Tg) ranging from 283 to 329°C and good thermal properties evidenced by no significant weight loss up to 380°C and 10% weight loss recorded above 425°C in air. All the polyamides exhibited an amorphous nature as evidenced by wide‐angle X‐ray diffraction and demonstrated a film forming capability. Water uptake values up to 3.35% were observed at 65% relative humidity. These polymers exhibited strong UV‐vis absorption maxima at 357–369 nm in DMSO solution, and no discernible photoluminescence maxima were detected by exciting with 365 nm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
A series of fluorinated polyamides was prepared directly by low‐temperature polycondensation of a new cardo diacid chloride, 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]xanthene (BCPX), with various diamines containing trifluoromethyl substituents in N,N‐dimethylacetamide (DMAc). Almost all polyamides showed excellent solubility in amide‐type solvents such as DMAc and could also be dissolved in pyridine, m‐cresol, and tetrahydrofuran. These polymers had inherent viscosities between 0.77 and 1.31 dL g?1, and their weight‐average molecular weights and number‐average molecular weights were in the range of 69,000–102,000 and 41,000–59,000, respectively. The resulting polymers showed glass transition temperatures between 240–258°C and 10% weight loss temperatures ranging from 484°C to 517°C and 410°C to 456°C in nitrogen and air, respectively, and char yields at 800°C in nitrogen higher than 55%. All polymers were amorphous and could be cast into transparent, light‐colored, and flexible films with tensile strengths of 81–100 MPa, elongations at break of 8–12%, and tensile modulus of 1.6–2.1 GPa. These polymers had low‐dielectric constants of 3.34–3.65 (100 kHz), low‐moisture absorption in the range of 0.76–1.91%, and high transparency with an ultraviolet–visible absorption cut‐off wavelength in the 322–340 nm range. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Six new polyamides 5a‐f containing flexible trimethylene segments in the main chain were synthesized through the direct polycondensation reaction of 1,3‐(4‐carboxy phenoxy) propane 3 with six derivatives of aromatic diamines 4a‐f in a medium consisting of N‐methyl‐2‐pyrrolidone, triphenyl phosphite, calcium chloride, and pyridine. The polycondensation reaction produced a series of novel polyamides containing flexible trimethylene segments in the main chain in high yield with inherent viscosities between 0.32 and 0.68 dL/g. The resulted polymers were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity, and solubility tests. Thermal properties of these polymers were investigated by using thermal gravimetric analysis (TGA) and differential thermal gravimetric (DTG). The glass‐transition temperatures of these polyamides were recorded between 165 and 190°C by differential scanning calorimetry, and the 10% weight loss temperatures were ranging from 360 to 430°C under nitrogen. 1,3‐(4‐Carboxy phenoxy) propane 3 was prepared from the reaction of 4‐hydroxy benzoic acid 1 with 1,3‐dibromo propane 2 in the presence of NaOH solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
N‐Trimellitylimido‐L ‐phenylalanine was prepared from the reaction of 1,2,4‐benzenetricarboxylic anhydride with L ‐phenylalanine in N,N‐dimethylformamide solution at refluxing temperature. The direct polycondensation reaction of the monomer imide‐diacid with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylmethane, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, 4,4′‐diaminodiphenylether and benzidine was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrrolidone, pyridine and calcium chloride. The resulting poly(amide–imide)s, PAIs, having inherent viscosities of 0.21–0.45 dlg?1 were obtained in high yield. All of the above compounds were fully characterized by IR spectroscopy and elemental analyses. The optical rotation of all PAIs has also been measured. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2001 Society of Chemical Industry  相似文献   

5.
A series of polyamides and poly(amide‐imide)s was prepared by direct polycondensation of ether and nitrile group containing aromatic diamines with aromatic dicarboxylic acids and bis(carboxyphthalimide)s respectively in N‐methyl 2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. New diamines, such as 2,6‐bis(4‐aminophenoxy)benzonitrile and 2,6‐bis(3‐aminophenoxy)benzonitrile, were prepared from 2,6‐dichlorobenzonitrile with 4‐aminophenol and 3‐aminophenol, respectively, in NMP using potassium carbonate. Bis(carboxyphthalimide)s were prepared from the reaction of trimellitic anhydride with various aromatic diamines in N,N′‐dimethyl formamide. The inherent viscosities of the resulting polymers were in the range of 0.27 to 0.93 dl g?1 in NMP and the glass transition temperatures were between 175 and 298 °C. All polymers were soluble in dipolar aprotic solvents such as dimethylsulfoxide, dimethylacetamide and NMP. All polymers were stable up to 350 °C with a char yield of above 40 % at 900 °C in nitrogen atmosphere. All polymers were found to be amorphous except the polyamide derived from isophthalic acid and the poly(amide‐imide)s derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
A new diacid containing optically active functional groups, N,N′‐(4,4′‐diphthaloyl)‐bis‐L ‐leucine diacid ( 3 ), was synthesized and used in a preparation of a series of poly(amide‐imide)s (PAIs) by direct polycondensation with various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP). All polymers derived from diacid ( 3 ) were highly organosoluble in the solvents like N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, γ‐butyrolactone, cyclohexanone, and chloroform at room temperature or upon heating. Inherent viscosities of the PAIs were found to range between 0.34 and 0.61·dL g?1. All the PAIs afforded flexible and tough films. The glass‐transition temperatures of these PAIs were recorded between 212 and 237°C by differential scanning calorimetry, and the 10% weight loss temperatures were ranging from 372 to 393°C and 336–372°C under nitrogen and air, respectively. The polyimide films had a tensile strength in the range of 63–88 MPa and a tensile modulus in the range of 1.2–1.7 GPa. Optically active PAIs exhibited specific rotations in the range of ?10.58° to ?38.70°. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
N‐Trimellitylimido‐L ‐isoleucine (3) was prepared from the reaction of trimellitic anhydride with L ‐isoleucine [L ‐2‐amino‐3‐methylvalerianic acid or (2S,3S)‐2‐amino‐3‐methyl‐n‐valerinic acid] in an N,N‐dimethylformamide solution at the refluxing temperature. The direct polycondensation reaction of the monomer imide diacid (3) with 1,4‐phenylenediamine, 4,4′‐diaminodiphenylmethane, 4,4′‐diaminodiphenylsulfone, diaminodiphenylether, 1,5‐naphthalendiamine, 2,4‐diaminotoluene, and 1,3‐phenylenediamine was performed in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone (NMP), pyridine, and calcium chloride. The polycondensation was performed under two different conditions: in one method, the reaction mixture was heated in an NMP solution at 60, 90, and then 130°C for different periods of time, and in the other method, the reaction mixture was refluxed only for 1 min in the same solvent. The resulting poly(amide imide)s (PAIs), with inherent viscosities of 0.21–0.37 dL/g, were obtained in high yields. All of these compounds were fully characterized by IR spectra, elemental analyses, and specific rotation measurements. Some structural characterizations and physical properties of these new optically active PAIs were examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 116–122, 2003  相似文献   

8.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) was reacted with L ‐valine in a mixture of acetic acid and pyridine (3:2) at room temperature, and then was refluxed at 90–100 °C, N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid was obtained in quantitative yield. The imide–acid was converted to N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride by reaction with thionyl chloride. Rapid and highly efficient synthesis of a number of poly(amide–imide)s was achieved under microwave irradiation using a domestic microwave oven by polycondensation of N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride with six different derivatives of 5,5‐disubstituted hydantoin compounds in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. A suitable organic medium was o‐cresol. The polycondensation proceeded rapidly, compared with conventional melt polycondensation and solution polycondensation and was almost completed within 8 min, giving a series of poly(amide–imide)s with inherent viscosities in the range 0.15–0.36 dl g?1. The resulting poly(amide–imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by Fourier‐transform infrared (FT‐IR) spectroscopy, elemental analysis, inherent viscosity (ηinh) measurements, solubility testing and specific rotation measurements. The thermal properties of the poly(amide–imide)s were investigated by using thermogravimetric analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
Polyamides were synthesized by interfacial polycondensation of 2,3‐bis(4‐chloroformylphenyl)quinoxaline (BCFPQ) and several aliphatic diamines using a phase transfer catalyst, and their adhesive property for stainless steel was investigated. The inherent viscosity of the obtained polyamides ranged from 0.37 to 1.24 dL g−1. The glass transition temperatures of the polyamides ranged between 154 and 201°C, and their thermal decomposition temperatures were above 450°C. The polyamides were soluble in several organic solvents, including m‐cresol, N‐methyl‐2‐pyrrolidone (NMP), and formic acid. The adhesive property for stainless steel was examined by a standard tensile test. One member of the series, polyamide P8, derived from BCFPQ and 1,8‐octanediamine, displayed high tensile strength with values of 232 kgf cm−2 at 20°C, 173 kgf cm−2 at 120°C, and 137 kgf cm−2 at 180°C. Thus, the tensile strength of P8 decreased at 180°C, but the decrease was much smaller than that of an epoxy resin in wide use as a metal adhesive. Heat distortion temperature, measured by thermal mechanical analysis, of P8 was 191°C. This suggested that P8 possessed high thermal resistance in metal adhesives. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1366–1370, 1999  相似文献   

10.
A series of aromatic polyamides containing an s‐triazine ring with thiophenoxy linkages was synthesized from two new diacids, namely 2,4‐bis‐(4‐carboxyphenoxy)‐6‐thiophenoxy‐s‐triazine and 2,4‐bis‐(3‐carboxyphenoxy)‐6‐thiophenoxy‐s‐triazine, and commercially available aromatic diamines by using Yamazaki's phosphorylation reaction. The polyamides were obtained in good yields and were characterized by solubility tests, viscosity measurements, FTIR, 1H and 13C NMR spectroscopy, X‐ray diffraction studies and thermogravimetric analysis. The polyamides were found to have inherent viscosities in the range of 0.35 to 0.56 dl g?1 in N,N‐dimethylacetamide (DMAc) at 30 ± 0.1 °C. All the polyamides were readily soluble in solvents such as DMAc, N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF) and m‐cresol. Thermogravimetric analysis of the polyamides indicated no weight loss below 345 °C under a nitrogen atmosphere. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

12.
Two novel monomers, 9,9‐bis[4‐(4‐carboxyphenoxy)phenyl]xanthene (BCAPX) and 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene (BAPX) were prepared in two main steps starting from nucleophilic substitution of 9,9‐bis(4‐hydroxyphenyl)xanthene (BHPX) with p‐fluorobenzonitrile and p‐chloronitrobenzene, respectively. Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides containing xanthene cardo groups with the inherent viscosities (0.82–1.32 dL/g) were prepared by polycondensation from BCAPX with various aromatic diamines or from BAPX with various aromatic dicarboxylic acids in an N‐methyl‐2‐pyrrolidone (NMP) solution containing dissolved calcium chloride, respectively. All new polyamides were amorphous and readily soluble in various polar solvents such as N,N‐dimethylformamide (DMF), NMP, N,N‐dimethylacetamide (DMAc) and pyridine. These polymers showed relatively high glass transition temperatures between 264 and 308°C, decomposition temperatures at 10% weight loss ranging from 502 to 540°C and 488 to 515°C in nitrogen and air, respectively, and char yields at 800°C in nitrogen higher than 56%. Transparent, flexible, and tough films of these polymers cast from DMAc solutions exhibited tensile strengths ranging from 86 to 109 MPa, elongations at break from 13 to 22%, and initial moduli from 2.15 to 2.63 GPa. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
N‐Trimellitylimido‐L ‐leucine was reacted with thionyl chloride, and N‐trimellitylimido‐L ‐leucine diacid chloride was obtained in a quantitative yield. The reaction of this diacid chloride with p‐aminobenzoic acid was performed in dry tetrahydrofuran, and bis(p‐amidobenzoic acid)‐N‐trimellitylimido‐L ‐leucine (5) was obtained as a novel optically active aromatic imide–amide diacid monomer in a high yield. The direct polycondensation reaction of the monomer imide–amide diacid 5 with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylether, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, and benzidine (4,4′‐diaminobiphenyl) was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone, pyridine, and calcium chloride. The resulting novel poly(amide imide)s (PAIs), with inherent viscosities of 0.22–0.52 dL g?1, were obtained in high yields, were optically active, and had moderate thermal stability. All of the compounds were fully characterized with IR spectroscopy, elemental analyses, and specific rotation. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 35–43, 2002; DOI 10.1002/app.10181  相似文献   

14.
A pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) was reacted with L ‐isoleucine in acetic acid, and the resulting imide acid [N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine] (4) was obtained in a high yield. 4 was converted into N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine diacid chloride by a reaction with thionyl chloride. The polycondensation reaction of this diacid chloride with several aromatic diamines, including 1,4‐phenylenediamine, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylsulfone (4,4′‐sulfonyldianiline), 4,4′‐diaminodiphenylether, 2,4‐diaminotoluene, and 1,3‐phenylenediamine, was developed with two methods. The first method was polymerization under microwave irradiation, and the second method was low‐temperature solution polymerization, with trimethylsilyl chloride used as an activating agent for the diamines. The polymerization reactions proceeded quickly and produced a series of optically active poly(amide imide)s with good yields and moderate inherent viscosities of 0.17–0.25 dL/g. All of the aforementioned polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 951–959, 2004  相似文献   

15.
A new monomer, 2,5‐bis(4‐carboxy methylene phenyl)‐3,4‐diphenyl thiophene (V) has been synthesized and characterized by physical and spectroscopic methods. A series of eight aromatic–aliphatic polyamides was prepared from the (V) and different aromatic diamines using Yamazaki's direct phosphorylation reaction. The polyamides were characterized by IR spectroscopy, viscosity measurements, and thermal analysis. An excellent yield of these polyamides was obtained, with inherent viscosities in the range of 0.28 to 0.67 dL/g, and the polyamide were readily soluble in aprotic polar solvents such as N‐methyl‐2‐pyrrolidone, N‐N‐dimethyl acetamide, dimethyl sulphoxide, and so forth. Polyamides could be cast into transparent and flexible films. They had glass‐transition temperatures of 225–273°C. When evaluated by thermogravimetry, thermal analysis of the polyamides showed no weight loss below 311°C, and the char yield in air at 900°C was 55%–67%. The structure–property correlation among these polyamides is also discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 566–571, 2001  相似文献   

16.
Ionic liquids (ILs) are often well‐known benign solvents capable of replacing conventional organic solvents, and they have become attractive solvents for many chemical reactions. Aromatic polyamides (PAs) have received particular interest in past years because of their high thermal and chemical resistance and their potential as high‐performance materials for different applications. In this investigation, the preparation of extended PAs derived from 5‐aminoisophthalic acid containing chiral pendent linkage (N‐phthaloyl‐L ‐leucine) with various aromatic diamines was studied. The bulky monomer 5‐(4‐methyl‐2‐phthalimidylpentanoylamino)isophthalic acid was prepared in three steps. Direct polyamidation of this monomer with several commercially available diamines in the presence of IL (1,3‐dipropylimidazolium bromide) and triphenyl phosphite gave novel PAs in good yields and inherent viscosities in the range of 0.38–0.55 dL g?1. Because of the existence of amino acid in this architect, the resulting polymers are optically active. All of these PAs showed good solubility and readily dissolved in many organic solvents. Characterization of all the products was performed by FTIR, specific rotation, and representative ones by 1H NMR, elemental analysis, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). TGA exhibited that two elite polymers were stable, with 10% weight loss recorded above 410 and 430°C in the nitrogen atmosphere. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
N‐Trimellitylimido‐DL and L ‐alanine ( 3 ) were prepared from the reaction of trimellitic anhydride ( 1 ) with DL and L ‐alanine ( 2 ) in N,N‐dimethyl formamide (DMF) solution at refluxing temperature. The direct polycondensation reaction of the monomers imide‐diacid ( 3 ) with 4,4′‐diaminodiphenylsulfone ( 4a ), 4,4′‐diaminodiphenylmethane ( 4b ), 1,4‐phenylenediamine ( 4c ), 1,3‐phenylenediamine ( 4d ), 2,4‐diaminotoluene ( 4e ), and 4,4′‐diaminodiphenylether ( 4f ) was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone (NMP), pyridine, and calcium chloride. The resulting poly(amide‐imide)s PAIs, with inherent viscosities 0.32–0.66 dL/g, were obtained in high yield. All of the above‐mentioned compounds were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these new optically active PAI s are reported. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1312–1318, 2001  相似文献   

18.
A new monomer of tetraimide‐dicarboxylic acid (IV) was synthesized by starting from ring‐opening addition of 4,4′‐oxydiphthalic anhydride, trimellitic anhydride, and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene at a 1:2:2 molar ratio in N‐methyl‐2‐pyrrolidone (NMP). From this new monomer, a series of novel organosoluble poly(amide‐imide‐imide)s with inherent viscosities of 0.7–0.96 dL/g were prepared by triphenyl phosphite activated polycondensation from the tetraimide‐diacid with various aromatic diamines. All synthesized polymers were readily soluble in a variety of organic solvents such as NMP and N,N‐dimethylacetamide, and most of them were soluble even in less polar m‐cresol and pyridine. These polymers afforded tough, transparent, and flexible films with tensile strengths ranging from 99 to 125 MPa, elongations at break from 12 to 19%, and initial moduli from 1.6 to 2.4 GPa. The thermal properties and stability were also good with glass‐transition temperatures of 236–276°C and thermogravimetric analysis 10 wt % loss temperatures of 504–559°C in nitrogen and 499–544°C in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2854–2864, 2006  相似文献   

19.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 1,4‐bis(trimellitimido)‐2,5‐dichlorobenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.88–1.27 dL g−1. The diimide‐diacid monomer (I) was prepared from 2,5‐dichloro‐p‐phenylenediamine with trimellitic anhydride. All the resulting polymers were amorphous and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Cast films had tensile strengths ranging from 92 to 127 MPa, elongations at break from 4 to 24%, and initial moduli from 2.59 to 3.65 GPa. The glass transition temperatures of these polymers were in the range of 256°–317°C, and the 10% weight loss temperatures were above 430°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 271–278, 1999  相似文献   

20.
In order to obtain polyamides with enhanced solubility and processability, as well as good mechanical and thermal properties, several novel polyamides containing sulfone‐ether linkages and xanthene cardo groups based on a new diamine monomer, 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene (BAPX), were investigated. The BAPX monomer was synthesized via a two‐step process consisting of an aromatic nucleophilic substitution reaction of readily available 4‐chloronitrobenzene with 9,9‐bis(4‐hydroxyphenyl)xanthene in the presence of potassium carbonate in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Four novel aromatic polyamides containing sulfone‐ether linkages and xanthene cardo groups with inherent viscosities between 0.98 and 1.22 dL g?1 were prepared by low‐temperature polycondensation of BAPX with 4,4′‐sulfonyldibenzoyl chloride, 4,4′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride, 3,3′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride and 4,4′‐[sulfonyl‐bis(2,6‐dimethyl‐1,4‐phenyleneoxy)]dibenzoyl chloride in N,N‐dimethylacetamide (DMAc) solution containing pyridine. All these new polyamides were amorphous and readily soluble in various polar solvents such as DMAc and N‐methylpyrrolidone. These polymers showed relatively high glass transition temperatures in the range 238–298 °C, almost no weight loss up to 450 °C in air or nitrogen atmosphere, decomposition temperatures at 10% weight loss ranging from 472 to 523 °C and 465 to 512 °C in nitrogen and air, respectively, and char yields at 800 °C in nitrogen higher than 50 wt%. Transparent, flexible and tough films of these polymers cast from DMAc solution exhibited tensile strengths ranging from 78 to 87 MPa, elongations at break from 9 to 13% and initial moduli from 1.7 to 2.2 GPa. Primary characterization of these novel polyamides shows that they might serve as new candidates for processable high‐performance polymeric materials. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号