首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A fully integrated 0.6 V low‐noise amplifier (LNA) for X‐band receiver application based on 0.18 μm RFSOI CMOS technology is presented in this paper. To achieve low noise and high gain with the constraint of low voltage and low power consumption, a novel modified complementary current‐reused LNA using forward body bias technique is proposed. A diode connected MOSFET forward bias technique is employed to minimize the body leakage and improve the noise performance. A notch filter isolator is constructed to improve the linearity of low voltage. The measured results show that the proposed LNA achieves a power gain of 11.2 dB and a noise figure of 3.8 dB, while consuming a DC current of only 1.6 mA at supply voltage of 0.6 V. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
A low voltage bulk‐driven operational transconductance amplifier (OTA) and its application to implement a tunable Gm‐C filter are presented. The linearity of the proposed OTA is achieved by nonlinear terms cancelation technique, using two paralleled differential topologies with opposite signs in the third‐order harmonic distortion term of the differential output current. The proposed OTA uses 0.8 V supply voltage and consumes 31.2 μW. The proposed OTA shows a total harmonic distortion of better than ?40 dB over the tuning range of the transconductance, by applying 800 mVppd sine wave input signal with 1 MHz frequency. The OTA has been used to implement a third‐order low‐pass Gm‐C filter, which can be used for wireless sensor network applications. The filter can operate as the channel select filter and variable gain amplifier, simultaneously. The gain of the filter can be tuned from ?1 to 23 dB, which results in power consumptions of 187.2 to 450.6 μW, respectively. The proposed OTA and filter have been simulated in a 0.18 µm CMOS technology. Simulations of process corners and temperature variations are also included in the paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A new large dynamic‐range variable gain amplifier (VGA) with improved dB linearity is presented. The traditional cascade VGA has the disadvantages of gain mismatch between sub‐stages and difficulty of employing mismatch cancelation or suppression algorithms. In this paper, switch arrays were used to make the sub‐stages or called gain cells in the coarse‐tuning stage (CTS) work independently and therefore prevent the integral operation of the gain errors. Then, a second‐order mismatch‐shaping DEM was applied conveniently to the CTS and shown to be a useful design technique in improving the dB‐linearity performance. The cascade VGA and its second‐order mismatch‐shaping DEM had been integrated in a 2.4‐GHz receiver chip which was fabricated in a 0.18‐µm CMOS technology with a supply voltage of 1.8 V. Measurement results showed that the gain errors were significantly reduced with second‐order mismatch‐shaping DEM with respect to the traditionally thermometric decoding over a temperature range of [?40, 80] °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A duplex current‐reused complementary metal–oxide–semiconductor low‐noise amplifier (LNA) is proposed for 2.5‐GHz application. The duplex current‐reused topology with equivalent three common‐source gain stages cascaded is utilized to fulfil the low‐power consumption and high gain simultaneously. The complementary derivative superposition linearization technique with bulk‐bias control is employed to improve the linearity performance with large‐signal swing and to extend the auxiliary transistors bias‐control range. The proposed LNA is fabricated in a 0.18‐um 1P5M complementary metal–oxide–semiconductor process and consumes a 3.13‐mA quiescent current from a 1.5 V voltage supply. The measurement results show that the proposed LNA achieves power gain of 28.1 dB, noise figure of 1.64 dB, input P1dB and IIP3 of −19.6 dBm and 3.2 dBm, respectively, while the input and output return loss is 19.2 dB and 18.4 dB. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a 40 M–1000 MHz 77.2‐dB spurious free dynamic range (SFDR) CMOS RF variable gain amplifier (VGA) has been presented for digital TV tuner applications. The proposed RFVGA adopts a wideband operational‐amplifier‐based VGA and a wideband buffer with differential multiple gated transistor linearization method for wideband operation and high linearity. The SFDR of the proposed RFVGA is also analyzed in detail. Fabricated in a 0.13‐µm CMOS process, the RFVGA provides 31‐dB gain range with 1‐dB gain step, a minimum noise figure of 7.5 dB at a maximum gain of 27 dB, and maximum in‐band output‐referred third‐order intercept point of 27.7 dBm, while drawing an average current of 27.8 mA with a supply voltage of 3.3 V. The chip core area is 0.54 mm × 0.4 mm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A low noise and high linearity down‐conversion CMOS mixer for 2.4‐GHz wireless receiver is presented in this paper. Using a sub‐harmonic balun with a simple but effective B‐type amplifier, the local oscillator frequency required for this mixer has been reduced by half, and the input local oscillator signal could be single‐ended rather than differential, which simultaneously simplifies the design of local oscillator. A distortion and noise cancelation transconductor in association with current bleeding technique is employed to improve the noise and linearity of the entire mixer under a reduced bias current without compromising the voltage gain. Fabricated in a 0.18‐µm RF CMOS technology of Global Foundries, the mixer demonstrates a voltage gain of 15.8 dB and input‐referred third‐order intercept point of 6.6 dBm with a noise figure of 2.6 dB. It consumes 7.65 mA from a 1.0‐V supply and occupies a compact area of 0.75 × 0.71 mm2 including all test pads. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Current reuse low‐noise‐amplifiers (CRLNAs) have been the norm to achieve high‐gain and low‐noise figure under low‐power budgets. However, conventional CRLNAs suffer from a severe lack of large‐signal linearity, especially in conventional cascaded CRLNAs. This main drawback is related with the typical biasing method imposed in the output stage. To prove our point, a large‐signal study is performed for a single stage common‐source in two distinct biasing situations: voltage biased and current biased. On the basis of the gathered results, a new CRLNA solution is proposed to relief the large‐signal bottleneck. The suggested design is analyzed in a 0.13 µm complementary metal–oxide–semiconductor (CMOS) standard process. Post‐layout simulations show 8 dB compression point improvement compared with the conventional CRLNA solution. The CRLNA draws a current of 650 μA from a 1.2 V supply. At 2.45 GHz, a power gain of 25.3 dB and a NF of 2.3 dB are achieved, while the IIP3 is ?9 dBm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this work we present a detailed study of the phase noise of subharmonic injection locked oscillators (s‐ILOs). A new simple and efficient model has been presented for accurately predicting the phase noise of a microwave s‐ILO. The validity of the analytical technique is verified with measurement results obtained from a 5‐GHz fully differential Colpitts‐based s‐ILO. The results showed that a phase noise improvement of 12 dB at 1 kHz offset frequency compared to the free‐running case can be achieved, whereas the power consumption is 21 mW. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A novel low‐power receiver topology for radio‐frequency and microwave applications is presented. The proposed solution exploits a simple connection between the low‐noise amplifier and the subsequent mixer, which is realized by means of a high‐value resistor and a current mirror, achieving low noise and high linearity performance with an extremely low power consumption. The criteria for its optimal design are derived in order to accomplish the main trade‐offs among noise figure (NF), linearity, and current consumption performance. As a case of study, the new topology has been designed in the case of I/Q direct conversion receiver for IEEE 802.15.4 standard (ZigBee) applications at 2.45 GHz. The receiver exhibits a NF of 8.7 dB, 50Ω input impedance, a voltage gain of 26 dB, an input‐referred third‐order intercept point of ?13 dBm, and a power consumption of 8.6 mW, which represent one of the best performance trade‐offs obtained in the literature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper represents the design of a class-F power amplifier (PA), its artificial neural network (ANN) model and a PA linearization method. The designed PA operates at 1.8 GHz with gain of 12 dB and 1dB output compression point (P1dB) of 36 dBm. The proposed ANN model is used to predict the output power of designed class-F PA as a function of input and DC power. This model utilizes the designed class-F PA as a block, which could be used in a desired linearization circuit. In addition, the power added efficiency (PAE) and the other specifications of a PA, related to power can be predicted using the proposed model. A simple feedforward technique is used to improve the linearity of designed PA. For verification, this linearization method is compared with presented neural network model simulations. The results show the improvement of P1dB from 36 to 41 dBm, which is predicted using the proposed model. Also, the PAE of the final linearized circuit PA is predicted.  相似文献   

11.
A novel Gm‐C filter design technique is presented. It is based on floating‐gate metal oxide semiconductor (FGMOS) transistors and consists in a topological rearrangement of conventional fully differential Gm‐C structures without modifying the employed transconductors at transistor level. The proposed method allows decreasing the number of active elements (transconductors) of the filter. Moreover, high linearity is obtained at low and medium frequencies of the pass band. Drawbacks inherent to the use of FGMOS transistors are analyzed, such as large occupied area, high sensitivity to mismatch, or parasitic zeros in transfer functions. The features of the proposed technique are fully exploited in all‐pole Gm‐C filter design, specially implementing unity gain Butterworth transfer functions. Thus, two low‐power second‐order Butterworth Gm‐C filters have been designed and fabricated to compare the proposed FGMOS technique with their equivalent topologies obtained by a conventional design method. Measurement results for a test chip prototype in a 0.5‐µm standard complementary MOS process are presented, confirming the advantages of the proposed FGMOS design technique. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A new topology of bipolar low noise amplifier (LNA) for RF applications, named base coupled differential (BCD), is presented. The proposed approach is compared by simulation against most classical topologies. The BCD configuration has the key advantage to join an integrated matching on a single‐ended input with a differential output. This is done by using down‐bond wiring, so that no integrated inductors are needed. The main advantages of this new topology are a drastic area reduction and an increased linearity range (or a reduced biasing current with the same linearity) together with a noise figure (NF) and voltage supply reduction. Particularly, the BCD LNA presented in this paper has been designed for 2.44GHz frequency operation. It is characterized by a NF of 1.93dB, a voltage gain (Av) of 19.5dB, an input impedance of 50Ωa third Input‐referred Intercept Point (IIP3) of ‐7.25dBm and a dissipated power (PD) equal to 19mW. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A direct conversion transmitter with auto‐calibration mechanism is presented in this paper. Both the carrier leakage and in‐phase/quadrature (I/Q) phase imbalance are compensated by a proposed calibration algorithm to improve transmitter's single‐sideband performance. The digital‐assisted correction circuits are implemented in a calibration feedback path to reduce the mismatches and variations, which in turn achieves properties of high linearity, high sideband, and carrier suppression ratio. The measured single‐sideband performance with calibration applied to the transmitter demonstrates an over 40 and 50‐dBc rejection on sideband and carrier signals at the desired frequency band, respectively. For linearity performance, the measured output 1‐dB compression point (OP1dB) is 9.1 dBm, while the highest voltage gain is from 4.3 to 6.2 dB. Additionally, the error vector magnitude (EVM) of −37.082 dB (< 1.4%) can be achieved under an orthogonal frequency division multiple access (OFDMA) 64 QAM‐3/4 modulated signal test. The transmitter consumes 112.7 mA under supply voltage of 3.3 V using the TSMC SiGe BiCMOS technology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
This paper describes the design of a push‐pull power amplifier (PA) with a center‐tapped transformer for transmitter applications on the 5.2‐GHz band using 0.18μm CMOS technology. The type of the proposed PA is based on a double‐ended push–pull (DEPP) configuration. DEPP has a simple construction with only transistors and transformers. The PA has reverse‐phased cascode‐connected transistors. The proposed transformer has a multilayer structure and was designed using electromagnetic field simulation. To achieve high power added efficiency (PAE), we assumed the optimized output impedance technique with a tunable impedance antenna. The PA has 13.2 dB linearity gain, 14.9 dBm 1‐dB compression point (P1dB), and 27.4% maximum PAE. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

15.
In this paper, two new techniques are proposed to improve the second‐order input intercept point (IIP2) and conversion‐gain in double‐balanced Gilbert‐cell complementary metal‐oxide semiconductor (CMOS) mixers. The proposed IIP2 improvement technique is based on canceling the common‐mode second‐order intermodulation (IM2) component at the output current of the transconductance stage. Additionally, the conversion‐gain is improved by increasing the fundamental component of the transconductance stage output current and creating a negative capacitance to cancel the parasitic capacitors. Moreover, in the proposed IM2 cancelation technique, by decreasing the bias current of the switching transistors, the flicker noise of the mixer is reduced. The proposed mixer has been designed with input frequency and output bandwidth equal to 2.4 GHz and 20 MHz, respectively. Spectre‐RF simulation results show that the proposed techniques simultaneously improve IIP2 and conversion‐gain by approximately 23.2 and 5.7 dB, respectively, in comparison with the conventional mixer with the same power consumption. Also, the noise figure (NF) at 20 kHz, where the flicker noise is dominant, is reduced by 4.9 dB. The average NF is increased nearly 0.9 dB, and the value of third‐order input intercept point (IIP3) is decreased approximately 1.8 dB. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A novel fully differential CMOS second‐generation current conveyor (CCII) topology is presented. It can be considered as a universal fully differential programmable active element. The circuit operates in moderate inversion region, and features high linearity over a wide input range. Current gain between terminals X and Z can be continuously tuned in a wide range. These features are essential to extend the utilization of CCII‐based circuits to high‐performance VLSI applications. Analogue design based on this new cell is illustrated by various examples. The proposed CCII has been fabricated in a 0.5‐µm CMOS technology and its main performance characteristics have been measured. They are in good agreement with theory and demonstrate that operation in moderate inversion can lead to distortion levels much lower than those achieved in strong inversion. Experimental results for a Tow–Thomas biquadratic filter fabricated on the same chip are also presented, showing continuous frequency tuning in more than a decade. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Two highly linear, digitally programmable gain amplifiers are presented and compared in terms of linearity, frequency, area and power consumption. High linearity and wide gain tuning range with moderate area consumption are the main benefits of both configurations. Furthermore, constant bandwidth is achieved by means of switched compensation capacitor arrays. Three‐bit prototypes were integrated in a 0.35 µm–3.3 V CMOS process with 2.5 V supply voltage. Experimental distortion levels are better than ?68 dB for 1 MHz and 1 Vp?p output signals in both configurations; hence, the suitability of the linearization technique based on MOS current dividers is shown. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A scheme to achieve simultaneously extremely high slew‐rate improvement and avoiding open‐loop gain degradation in one‐stage super class AB op‐amps is introduced. It overcomes the serious shortcoming of super class AB operational transconductance amplifiers that shows very high‐output current enhancement factors at the expense of degrading the open‐loop gain. The proposed scheme uses dynamically biased cascode transistors to avoid gain and slew‐rate degradation. Experimental results of a super class AB operational transconductance amplifier in 180‐nm complementary metal‐oxide semiconductor technology with open‐loop gain of 67 dB, a factor 2 improvement in GBW , and a current enhancement factor of 270 verify the proposed scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
A new 0.5‐V fully differential amplifier is proposed in this article. The structure incorporates a differential bulk‐driven voltage follower with conventional gate‐driven amplification stages. The bulk‐driven voltage follower presents differential gain equal to unity while suppressing the input common‐mode voltage. The amplifier operates at a supply voltage of less than 0.5 V, performing input transconductance almost equal to a gate transconductance and relatively high voltage gain without the need for gain boosting. The circuit was designed and simulated using a standard 0.18‐µm CMOS n‐well process. The low‐frequency gain of the amplifier was 56 dB, the unity gain bandwidth was approximately 3.2 MHz, the spot noise was 100 nV/√Hz at 100 kHz and the current consumption was 90 μΑ. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A novel 1.57 GHz complementary metal–oxide semiconductor inductor–capacitor voltage‐controlled oscillator with the common‐mode replica compensation is introduced for mixed‐signal system‐on‐chip applications. In order to alleviate power line disturbances, the center tap node of differential symmetric inductor and the replica biasing circuit are adopted in the differential voltage regulating unit to reduce power supply sensitivity. In addition, this proposed design also leads to low tuning gain and low power dissipation. The post‐layout simulation results under the Taiwan Semiconductor Manufacturing Company's mixed‐signal 0.18 µm 1P6M process show that the proposed design achieves power supply rejection of ?68.6 dB at low frequencies and 1.2 MHz/V pushing sensitivity. It exhibits phase noise of ?130.6 dBc/Hz at a 1 MHz offset from a 1.57 GHz carrier yet dissipates only 5.58 mW under a 1.8 V power supply. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号