首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable poly[(2‐methacryloyloxyethyl phosphorylcholine)‐block‐(D ,L ‐lactide)] (PMPC‐b‐PLA) diblock copolymers with various hydrophilic PMPC weight fractions (fPC) will spontaneously self‐assemble into well‐defined vesicles and large compound micelles (LCMs) in water. Transmission electron microscopy, scanning electron microscopy, dynamic light scattering and fluorescence microscopy were used to observe their aggregate morphologies. The degradation of the LCMs was investigated and the loss of molecular weight of PLA blocks was confirmed using 1H NMR analysis. The hydrolysis of PLA increases fPC and consequently shifts the preferred morphology from LCMs to vesicles. Such degradation‐induced morphological transitions mean that the biocompatible and biodegradable LCMs have great application potential in drug delivery. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
A series of copolymers of poly(2‐methacryloyloxyethyl phosphorylcholine)‐b‐poly(butylene succinate)‐b‐poly(2‐methacryloyloxyethyl phosphorylcholine) (PMPC‐b‐PBS‐b‐PMPC) were synthesized by atom transfer radical polymerization. The structure of the polymers was characterized by 1H NMR and infrared spectroscopy, and their thermal properties were described using TGA and DSC. In aqueous solutions, the PMPC‐b‐PBS‐b‐PMPC could form micelles with sizes ranging from 108 to 170 nm. In vitro release studies showed that acidic media and a longer PMPC chain benefited doxorubicin (DOX) release. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assays indicated that the micelles had low cytotoxicity to HeLa and L929 cells. DOX‐loaded micelles exhibited high cytotoxicity to HeLa cells. Flow cytometry results demonstrated that DOX‐loaded micelles could be internalized by HeLa cells. The in vitro phagocytosis results showed 3.9‐fold and 5.5‐fold reductions compared with poly(lactic acid) (PLA) nanoparticles and PDS55 micelles. These results demonstrate that PMPC‐b‐PBS‐b‐PMPC block copolymer micelles have great promise for cancer therapy. © 2017 Society of Chemical Industry  相似文献   

3.
Poly[2‐(methacryloyloxy)ethyl phosphorylcholine](PMPC) with one pendant tocopheryl moiety at the polymer terminus (PMPC‐Toco) was prepared by the radical polymerization of 2‐(methacryloyloxy)ethyl phosphorylcholine (MPC) initiated with 4,4′‐azobis[(3‐tocopheryl)‐4‐cyanopentanoate] in the presence of 2‐mercaptoethanol as a chain transfer reagent. The self‐organization of PMPC‐Toco was analyzed with fluorescence and 1H‐NMR measurements. The critical micelle concentrations of PMPC‐Toco with [η] = 0.25, 0.13, 0.10, and 0.05 dL g?1 were found to be 200, 100, 100, and 90 mg L?1, respectively. The blood compatibility of PMPC‐Toco was evaluated from the Michaelis constant (Km) for the enzymatic reaction of thrombin and a synthetic substrate, S‐2238, in the presence of PMPC‐Toco. The Km values were 0.21, 0.23, 0.36, and 0.21 for PMPC‐Toco‐1, 2, 3, and PMPC ([η] = 0.56 dL g?1), respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
In this article, urease was immobilized in a conducting network via complexation of poly(1‐vinyl imidazole) (PVI) with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) (PAMPS). The preparation method for the polymer network was adjusted by using Fourier transform infrared (FTIR) spectroscopy. A scanning electron microscope (SEM) study revealed that enzyme immobilization had a strong effect on film morphology. The proton conductivity of the PVI/PAMPS network was measured via impedance spectroscopy, under humidified conditions. The basic characteristics (Michealis‐Menten constants, pHopt, pHstability, Topt, Tstability, reusability, and storage stability) of the immobilized urease were determined. The obtained results showed that the PAA/PVI polymer network was suitable for enzyme immobilization. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Hexa‐armed star‐shaped poly(ε‐caprolactone)‐block‐poly(L ‐lactide) (6sPCL‐b‐PLLA) with dipentaerythritol core were synthesized by a two‐step ring‐opening polymerization. GPC and 1H NMR data demonstrate that the polymerization courses are under control. The molecular weight of 6sPCLs and 6sPCL‐b‐PLLAs increases with increasing molar ratio of monomer to initiator, and the molecular weight distribution is in the range of 1.03–1.10. The investigation of the melting and crystallization demonstrated that the values of crystallization temperature (Tc), melting temperature (Tm), and the degree of crystallinity (Xc) of PLLA blocks are increased with the chain length increase of PLLA in the 6sPCL‐b‐PLLA copolymers. On the contrary, the crystallization of PCL blocks dominates when the chain length of PLLA is too short. According to the results of polarized optical micrographs, both the spherulitic growth rate (G) and the spherulitic morphology are affected by the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
In recent years, much attention has been given to the development of specialty polymers from useful materials. In this context, amphiphilic block copolymers were prepared by atom transfer radical polymerization (ATRP) of N‐phenylmaleimide (N‐PhMI) or styrene using a poly(2‐hydroxyethylmethacrylate)‐Cl macroinitiator/CuBr/bipyridine initiating system. The macroinitiator P(HEMA)‐Cl was directly prepared in toluene by reverse ATRP using BPO/FeCl3 6 H2O/PPh3 as initiating system. The microstructure of the block copolymers were characterized using FTIR, 1H‐NMR, 13C‐NMR spectroscopic techniques and scanning electron microscopy (SEM). The thermal behavior was studied by differential scanning calorimetry (DSC), and thermogravimetry (TG). The theoretical number average molecular weight (Mn,th) was calculated from the feed capacity. The microphotographs of the film's surfaces show that the film's top surfaces were generally smooth. The TDT of the block copolymer P(HEMA)80b‐P(N‐PhMI)20 and P(HEMA)90b‐P(St)10 of about 290°C was also lower than that found for the macroi′nitiator poly(HEMA)‐Cl. The block copolymers exhibited only one Tg before thermal decomposition, which could be attributed to the low molar content of the N‐PhMI or St blocks respectively. This result also indicates that the phase behavior of the copolymers is predominately determined by the HEMA block. The curves reveal that the polymers show phase transition behavior of amorphous polymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

8.
The synthesis, characterization and potential application in the doxorubicin (Dox) delivery system of a biodegradable polypeptide‐based block copolymer, poly(ethylene glycol)2000‐poly(?‐caprolactone)6000‐poly(glutamic acid)1000 (PEG2000‐PCL6000‐PGA1000), was investigated. The copolymer was synthesized via ring‐opening polymerization and characterized by 1H NMR and Fourier transform IR. The synthesized copolymer could self‐assemble into aggregates and the critical aggregation concentration was 0.23 mg mL?1. Transmission electron microscopy indicated that spherical polymersomes formed with a desirable size about 180 nm. Therefore Dox was encapsulated into these polymersomes, and then we investigated its applications in a drug delivery system. These Dox‐loaded polymersomes (PolyDox) were characterized by dynamic light scattering, zeta potential and pH responsiveness measurements. In vitro drug release indicated that the release rate of drug from PolyDox was pH‐responsive and significantly decreased. The drug pharmacokinetic parameters were improved in comparison to the group treated with free Dox, which proved the prolonged Dox release from PolyDox. A WST‐1 assay indicated a low toxicity and good compatibility of copolymer to cells within 48 h. The results also showed that PolyDox appeared to induce a higher anti‐tumor effect. Cell uptake results indicated that PolyDox displayed higher cellular uptake in A549 cells. Endocytosis inhibition results demonstrated that the internalization of PolyDox was mostly mediated by the fluid‐phase endocytosis pathway. © 2017 Society of Chemical Industry  相似文献   

9.
The condensation reaction product of poly(lactic acid) (PLA) and a hydroxyl‐terminated four‐armed poly(ε‐caprolactone) (PCL) was studied by size‐exclusion chromatography, DSC, and NMR. The use of both L ‐lactic acid (LLA) and rac‐lactic acid (rac‐LA) was studied and the use of two different catalysts, stannous 2‐ethylhexanoate [Sn(Oct)2] and ferrous acetate [Fe(OAc)2], was also investigated. The thermal stability and adhesive properties were also measured for the different formulations. The characterization results suggested the formation of a blend of PLA and a block‐copolyester of PLA and PCL. The results further indicated partial miscibility in the amorphous phase of the blend showing only one glass‐transition temperature in most cases, although no randomized structures could be detected in the block‐copolymers. The polymerization in the Fe(OAc)2‐catalyzed experiments proceeded slower than in the Sn(Oct)2‐catalyzed experiments. The discoloring of the polymer was minor when Fe(OAc)2 was used as catalyst, but significant when Sn(Oct)2 was used. The ferrous catalyst also caused a slower thermal degradation. Differences in the morphology and in the adhesive properties could be related to the stereochemistry of the poly(lactic acid). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 196–204, 2004  相似文献   

10.
The specific interactions in ternary 4‐hydroxybenzoic acid (HBA)/poly(2‐vinylpyridine) (P2VPy)/poly(N‐vinyl‐2‐pyrrolidone) (PVP) blends were studied by differential scanning calorimetry, Fourier transform infrared (FTIR) spectroscopy, and electron microscopy. FTIR study shows the existence of hydrogen‐bonding interactions between HBA and P2VPy as well as PVP. The addition of a sufficiently large amount of HBA produces a blend showing one glass‐transition temperature (Tg). Microscopic study shows a drastic reduction in domain size in single‐Tg blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 901–907, 2001  相似文献   

11.
Grafting of poly(ε‐caprolactone) (PCL) and poly(lactide) (PLA) chains on poly(vinyl alcohol) backbone (PVA degree of hydrolysis 99%) was investigated using MgH2 environmental catalyst and melt‐grown ring‐opening polymerization (ROP) of ε‐caprolactone (CL) and L ‐lactide (LA), that avoiding undesirable toxic catalyst and solvent. The ability of MgH2 as catalyst as well as yield of reaction were discussed according to various PVA/CL/MgH2 and PVA/LA/MgH2 ratio. PVA‐g‐PCL and PVA‐g‐PLA were characterized by 1H‐ and 13C‐NMR, DSC, SEC, IR. For graft copolymers easily soluble in tetrahydrofuran (THF) or chloroform, wettability and surface energy of cast film varied in relation with the length and number of hydrophobic chains. Aqueous solution of micelle‐like particles was realized by dissolution in THF then addition of water. Critical micelle concentration (CMC) decreased with hydrophobic chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
In this article, 1‐octene and styrene was copolymerized by the supported catalyst (TiCl4/ID/MgCl2). Subsequently, by sulfonation reaction, sulfonated poly(1‐octene‐co‐styrene)s which were amphiphilic copolymers were prepared. The copolymerization behavior between 1‐octene and styrene is moderate ideal behavior. Copolymers prepared by this catalyst contain appreciable amounts of both 1‐octene and styrene. Increase in the feed ratio of styrene/1‐octene leads to increase in styrene content in copolymer and decrease in molecular weight. As the polymerization temperature increases, the styrene content in the copolymers increases, however, the molecular weight decreases. Hydrogen is an efficient regulator to lower the molecular weights of poly(1‐octene‐co‐styrene)s. The sulfonation degree of the sulfonated poly(1‐octene‐co‐styrene)s increased as the styrene content in copolymer increased or the molecular weight decreased. Thirty‐six hour is long enough for sulfonation reaction. The sulfonated poly(1‐octene‐co‐styrene)s can be used as effective and durable modifying agent to improve the wettability of polyethylene film and have potential application in emulsified fuels and for the stabilization of dispersions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Amphiphilic thermally sensitive poly(N‐isopropylacrylamide)‐block‐poly(tetramethylene carbonate) block copolymers were synthesized by ring‐opening polymerization of tetramethylene carbonate with hydroxyl‐terminated poly(N‐isopropylacrylamide) (PNiPAAm) as macro‐initiator in the presence of stannous octoate as catalyst. The synthesis involved PNiPAAm bearing a single terminal hydroxyl group prepared by telomerization using 2‐hydroxyethanethiol as a chain‐transfer agent. The copolymers were characterized using 1H NMR and Fourier transform infrared spectroscopy and gel permeation chromatography. Their solutions show reversible changes in optical properties: transparent below the lower critical solution temperature (LCST) and opaque above the LCST. The LCST depends on the polymer composition and the media. Owing to their amphiphilic characteristics, the block copolymers form micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range 1.11–22.9 mg L?1. Increasing the hydrophobic segment length or decreasing the hydrophilic segment length in the amphiphilic diblock copolymers produces lower CMCs. A core‐shell structure of the micelles is evident from 1H NMR analyses of the micelles in D2O. Transmission electron microscopic analyses of micelle morphology show a spherical structure of both blank and drug‐loaded micelles. The blank and drug‐loaded micelles have an average size of less than 130 nm. Observations show high drug‐entrapment efficiency and drug‐loading content for the drug‐loaded micelles. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A series of poly(R‐3‐hydroxybutyrate)/poly(ε‐caprolactone)/1,6‐hexamethylene diisocyanate‐segmented poly(ester‐urethanes), having different compositions and different block lengths, were synthesized by one‐step solution polymerization. The molecular weight of poly(R‐3‐hydroxybutyrate)‐diol, PHB‐diol, hard segments was in the range of 2100–4400 and poly(ε‐caprolactone)‐diol, PCL‐diol, soft segments in the range of 1080–5800. The materials obtained were investigated by using differential scanning calorimetry, wide angle X‐ray diffraction and mechanical measurements. All poly(ester‐urethanes) investigated were semicrystalline with Tm varying within 126–148°C. DSC results showed that Tg are shifted to higher temperature with increasing content of PHB hard segments and decreasing molecular weight of PCL soft segments. This indicates partial compatibility of the two phases. In poly(ester‐urethanes) made from PCL soft segments of molecular weight (Mn ≥ 2200), a PCL crystalline phase, in addition to the PHB crystalline phase, was observed. As for the mechanical tensile properties of poly(ester‐urethane) cast films, it was found that the ultimate strength and the elongation at the breakpoint decrease with increasing PHB hard segment content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 703–718, 2002  相似文献   

16.
A novel copolymer of polybenzimidazoles was prepared by copolymerization of 3,3′‐diaminobenzidine tetrahydrochloride, 3,4‐diaminobenzoic acid and isophthalic acid in polyphosphoric acid at 200 °C. The polymerization could be performed within 90–110 min with the assistance of microwave irradiation. The solubility of the copolymer obtained in N,N‐dimethylacetamide (DMAc) was improved compared with those of poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] and poly(2,5‐benzimidazole). Thus copolymer membranes could be readily prepared by dissolving the copolymer powders in DMAc with refluxing under ambient pressure. The decomposition temperature of the copolymer was about 520 °C in air according to thermogravimetric analysis data. The proton conductivity and mechanical strength of the phosphoric acid‐doped copolymer membranes were investigated at elevated temperatures. A conductivity of 0.09 S cm?1 at 180 °C and a tensile stress at break of 5.9 MPa at 120 °C were achieved for the acid‐doped copolymer membranes by doping acids in a 75 wt% H3PO4 solution. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
The spherulitic growth rates of a series poly (?‐caprolactone) homopolymers and poly(?‐caprolactone)‐b‐ poly(ethylene glycol) (PCL‐b‐PEG) block copolymers with different molecular weights but narrow polydispersity were studied. The results show that for both PCL homopolymers and PCL‐b‐PEG block copolymers, the spherulitic growth rate first increases with molecular weight and reaches a maximum, then decreases as molecular weight increases. Crystallization temperature has greater influence on the spherulitic growth rate of polymers with higher molecular weight. Hoffman–Lauritzen theory was used to analyze spherulitic growth kinetics and the free energy of the folding surface (σe) was derived. It is found that the values of σe decrease with molecular weight at low molecular weight level and become constant for high molecular weight polymers. The chemically linked PEG block does not change the values of σe significantly. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
The aim of the work reported was to synthesize a series of double‐hydrophilic poly(methacrylic acid)‐block‐poly(ethylene glycol)‐block‐poly(methacrylic acid) (PMAA‐b‐PEG‐b‐PMAA) triblock copolymers and to study their self‐assembly behavior. These copolymeric self‐assembly systems are expected to be potential candidates for applications as carriers of hydrophilic drugs. Bromo‐terminated difunctional PEG macroinitiators were used to synthesize well‐defined triblock copolymers of poly(tert‐butyl methacrylate)‐block‐poly(ethylene glycol)‐block‐poly(tert‐butyl methacrylate) via reversible‐deactivation radical polymerization. After the removal of the tert‐butyl group by hydrolysis, double‐hydrophilic PMAA‐b‐PEG‐b‐PMAA triblock copolymers were obtained. pH‐sensitive spherical micelles with a core–corona structure were fabricated by self‐assembly of the double‐hydrophilic PMAA‐b‐PEG‐b‐PMAA triblock copolymers at lower solution pH. Transmission electron microscopy and laser light scattering studies showed the micelles were of nanometric scale with narrow size distribution. Solution pH and micelle concentration strongly influenced the hydrodynamic radius of the spherical micelles (48–310 nm). A possible reason for the formation of the micelles is proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
This study synthesizes thermally sensitive block copolymers poly(N‐isopropylacrylamide)‐b‐poly(4‐methyl‐ε‐caprolactone) (PNIPA‐b‐PMCL) and poly(N‐isopropylacrylamide)‐b‐poly(4‐phenyl‐ε‐caprolactone) (PNIPA‐b‐PBCL) by ring‐opening polymerization of 4‐methyl‐ε‐caprolactone (MCL) or 4‐phenyl‐ε‐caprolactone (BCL) initiated from hydroxy‐terminated poly(N‐isopropylacrylamide) (PNIPA) as the macroinitiator in the presence of SnOct2 as the catalyst. This research prepares a PNIPA bearing a single terminal hydroxyl group by telomerization using 2‐hydroxyethanethiol (ME) as a chain‐transfer agent. These copolymers are characterized by differential scanning calorimetry (DSC), 1H‐NMR, FTIR, and gel permeation chromatography (GPC). The thermal properties (Tg) of diblock copolymers depend on polymer compositions. Incorporating larger amount of MCL or BCL into the macromolecular backbone decreases Tg. Their solutions show transparent below a lower critical solution temperature (LCST) and opaque above the LCST. LCST values for the PNIPA‐b‐PMCL aqueous solution were observed to shift to lower temperature than that for PNIPA homopolymers. This work investigates their micellar characteristics in the aqueous phase by fluorescence spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). The block copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 0.29–2.74 mg L?1, depending on polymer compositions, which dramatically affect micelle shape. Drug entrapment efficiency and drug loading content of micelles depend on block polymer compositions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Poly(L ‐lactide) (PLLA) and poly(3‐hydrobutyrate‐co‐3‐hydroxyvalerate) (PHBV) were blended with poly(butadiene‐co‐acrylonitrile) (NBR). Both PLLA/NBR and PHBV/NBR blends exhibited higher tensile properties as the content of acrylonitrile unit (AN) of NBR increased from 22 to 50 wt %. However, two separate glass transition temperatures (Tg) appeared in PLLA/NBR blends irrespective of the content of NBR, revealing that PLLA was incompatible with NBR. In contrast, a single Tg, which shifted along with the blend composition, was observed for PHBV/NBR50 blends. Moreover NBR50 suppressed the crystallization of PHBV, indicating that PHBV was compatible with NBR50. Decrease of both elongation modulus and stress at maximum load was less significant and increase of elongation at break was more pronounced in PHBV/NBR50 blends than in PLLA/NBR50 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3508–3513, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号