首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel monomer called 1,1′‐ferrocenediacyl anilide (FcA) was synthesized from ferrocene (Fc). Copolymerization was carried out between FcA and aniline (ANI) by an electrochemical method. The novel monomer and copolymer were characterized with 1H‐NMR, Fourier transform infrared (FTIR) spectroscopy, and ultraviolet–visible (UV–vis) spectroscopy. The hydrogen protons of the benzene ring were moved to a low field in 1H‐NMR, and the absorption band of N?Q?N (where Q is the quinoid ring) appeared in the FTIR spectrum of the polymer. The peaks of both Fc and the π–π* electronic transition in the UV–vis spectra were redshifted. The results indicate that the copolymer mainly existed as a highly delocalized conjugated system. X‐ray diffraction analysis established further proof, and the process of electrochemical deposition was observed by scanning electron microscopy. The optimal synthesis conditions of the copolymer were determined through changes in the monomer molar ratios and the scan rate. The ideal performance of the copolymer was gained when the monomer molar ratio between FcA and ANI was 1:4 and the scan rate was 50 mV/s. Furthermore, the electrochemical performances were tested in detail by cyclic voltammetry, galvanostatic charge–discharge testing, and electrochemical impedance spectroscopy. The results show that the specific capacitance of poly(1,1′‐ferrocenediacyl anilide‐co‐aniline) increased up to 433.1 F/g at 0.5 A/g, the diffusion resistance was very small, and the durability was good enough. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43217.  相似文献   

2.
Copolymer of thiophen‐3‐yl acetic acid 4‐pyrrol‐1‐yl phenyl ester (TAPE) with N‐methylpyrrole (NMPy) was synthesized by potentiostatic electrochemical polymerization in acetonitrile–tetrabutylammonium tetrafluoroborate solvent–electrolyte couple. The chemical structures were confirmed via Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and UV–vis spectroscopy. Electrochromic and spectroelectrochemical properties of poly(TAPE‐co‐NMPy) [P(TAPE‐co‐NMPy)] were investigated. Results showed that the copolymer revealed color change between light yellow and green upon doping and dedoping of the copolymer, with a moderate switching time. Furthermore, as an application, dual‐type absorptive/transmissive polymer electrochromic device (ECD) based on poly(TAPE‐co‐NMPy) and poly(3,4‐ethylene dioxythiophene) (PEDOT) have been assembled, where spectroelectrochemistry, switching ability, stability, and optical memory of the ECD were investigated. Results showed that the device exhibited good optical memory and stability with moderate switching time. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1988–1994, 2006  相似文献   

3.
A new tetrakis 4‐(2,5‐di‐2‐thiophen‐2‐yl‐pyrrol‐1‐yl) substituted nickel phthalocyanine (NiPc‐SNS) was synthesized and characterized by elemental analysis, Fourier Transform Infrared (FT‐IR), and UV–vis spectroscopies. The electrochemical polymerization of this newly synthesized NiPc‐SNS was performed in dichloromethane (DCM)/tetrabutylammonium perchlorate (TBAP) solvent/electrolyte couple. An insoluble film was deposited on the electrode surface, both during repetitive cycling and constant potential electrolysis at 0.85 V. Resulting polymer film, P(NiPc‐SNS), was characterized utilizing UV–vis and FT‐IR spectroscopic techniques and its electrochemical behavior was investigated via cyclic voltammetry (CV). Spectroelectrochemical behavior of the polymer film on indium tin oxide (ITO) working electrode was investigated by recording the electronic absorption spectra, in situ, in monomer‐free electrolytic solution at different potentials and it is found that the P(NiPc‐SNS) film can be reversibly cycled between 0.0 and 1.1 V and exhibits electrochromic behavior; dark olive green in the neutral and dark blue in the oxidized states with a switching time of 1.98 s. Furthermore, the band gap of P(NiPc‐SNS) was calculated as 2.27 eV from the onset of π–π* transition of the conjugated backbone. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
In this study, the oxidative polycondensation reaction conditions of 2,2′‐[(2,5‐dichloro‐1,4‐phenylene)bisnitrilomethylylidene]diphenol (DCPMDP) were studied between 40 and 90°C using different times and concentrations in the alkaline medium to determine effect on the yield of these parameters. Polymerization of 2,2′‐piperazine‐1,4‐diylbis[propane‐3,1‐diylnitrilomethylylidene]diphenol (PDMDP) was performed at two steps with graft polycondensation method. Additionally, seven different metal complexes were also synthesized from PDMDP with some metal salts. The structures of the compounds were confirmed by UV–vis, FT‐IR, 1H and 13C NMR spectroscopy analyses. The characterization was made by TG‐DTA, size exclusion chromatography (SEC), elemental analysis, and solubility tests. HOMO‐LUMO energy levels and electrochemical band (Eg′) gaps were determined from cyclic voltammetry (CV) measurements. Also, optical band (Eg) gaps were calculated from UV–vis measurements. Electrical conductivity of doped and undoped monomer and oligomer were measured by four‐point probe technique using an electrometer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Ferrocene‐substituted conducting polymer namely poly(trans‐1‐(4‐methyl‐3′‐thienyl)‐2‐(ferrocenyl)ethene‐co‐3,4‐ethylenedioxythiophene) [P(MTFE‐co‐EDOT)] was synthesized and its electrochromic properties were studied. Monomer, MTFE, was obtained using 2‐(ferrocenyl)ethene and 3‐methyl‐4‐bromothiophene. The structure of monomer was determined via Fourier transform infrared spectroscopy (FTIR), 1H‐NMR, and 13C‐NMR techniques. The copolymer was synthesized using this monomer and EDOT. The resulting copolymer P(MTFE‐co‐EDOT) was characterized by cyclic voltammetry, FTIR, scanning electron microscopy, atomic force microscopy, and UV–vis spectroscopy. The conductivity measurements of copolymer and PEDOT were accomplished by the four‐probe technique. Although poly(trans‐1‐(4‐methyl‐3′‐thienyl)‐2‐(ferrocenyl)ethene) [P(MTFE)] reveals no electrochromic activity, its copolymer with EDOT has two different colors (violet and gray). Band gap (Eg) and λmax of P(MTFE‐co‐EDOT) were determined. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
A donor–acceptor double‐cable polythiophene derivative ( PT‐F1 ) with side chain containing C60 end group was synthesized, and characterized by infrared, UV‐vis absorption and photoluminescence (PL) spectroscopy, and electrochemical cyclic voltammetry. Cyclic voltammogram of PT‐F1 shows the oxidation peak of the polymer main chains and the reduction peaks of the C60 end groups, indicating that there is no interaction between the polymer main chains and side chain C60 groups on the ground state. The UV‐vis absorption spectrum of PT‐F1 film is red‐shifted in comparison with that of its chloroform solution. The PL spectrum of the polymer main chain was quenched by the C60 pendant on the side chain. Polymer solar cell with the structure of ITO/PEDOT:PSS/ PT‐F1 /Ca/Al was fabricated. The power conversion efficiency of the device based on PT‐F1 reached 0.274% under the illumination of AM 1.5, 100 mW/cm2. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
New hole transport polymers have been synthesized by condensation polymerization of 4‐tolyldiphenylamine (TDPA) with various types of aldehyde. The reaction conditions have been investigated to yield polymers with high molecular weight. It is found that the molecular weight and yield of the TDPA–aldehyde polymers strongly depend on the electron donor–acceptor nature of the substituent on the aromatic ring of the aldehyde monomer. Structural characterization by 1H NMR spectroscopy shows that the addition condensation reaction occurs exclusively at the para position of TDPA. The electrochemical and optical properties of polymers have been investigated by cyclic voltammetry and UV–vis spectroscopy. Cyclic voltammograms of all polymers show well‐defined pairs of reduction and oxidation peaks, indicating that the polymers are electrochemically active. All polymers show low conductivities of magnitude 10?14 S cm?1. Differential scanning calori‐metry measurements reveal that TDPA–aldehyde polymers exhibit glass transitions in the range 170–230 °C. These polymers possess good solubility and the films show sufficient morphological stability. © 2001 Society of Chemical Industry  相似文献   

8.
Cyclic voltammetry, chronoamperometry, UV‐vis absorption spectroscopy, fluorescence spectroscopy, FTIR spectroscopy, and AFM techniques have been employed to investigate pyronin Y thin films formed on Au(111) substrates by electrochemical oxidation of pyronin Y monomer. The medium used in the electropolymerization was an anhydrous acetonitrile solution containing 0.1M TBAClO4 as supporting electrolyte. Anodic electropolymerization potential (1450 mV) of pyronin Y has been obtained from cyclic voltammetry data. Solid‐state electropolymerization of pyronin Y was performed by the potential‐controlled electrolysis technique. Chronoamperometry studies indicate that the adsorption of pyronin Y takes place in an instantaneous three‐dimensional nucleation and growth mechanism which is accompanied by random adsorption. UV‐vis absorption and fluorescence spectra of the electrolysis solution as a function of electrodeposition time show the adsorption of insoluble pyronin Y films on Au electrode surface. FTIR‐specular reflectance of a polymer coated Au electrode reveals that there is a possible C? C coupling in the formation of polymeric pyronin Y structure. A well ordered polymeric chain structure of pyronin Y on Au(111) has been observed from AFM data. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Photoresponsive polymer with azobenzene pendant group (PDMAA‐co‐PAPA) was synthesized by radical polymerization of N,N‐dimethylacrylamide (DMAA) and N‐4‐phenylazophenyl acrylamide (PAPA), and the characterization of the inclusion complexes of the PDMAA‐co‐PAPA with α‐cyclodextrin (α‐CD) were performed by FTIR, GPC, 1H NMR, 2D NOESY, and UV–vis spectroscopy. It was found that the solubility of PDMAA‐co‐PAPA and α‐CD inclusion complexes in aqueous solution showed tunable property, which could be triggered by alternating UV–vis light irradiation at a certain temperature due to the effect of molecular recognition of α‐CD with azobenzene moiety in the polymer. After UV irradiation, the lower critical solution temperature (LCST) of the polymer aqueous solution increased slightly without α‐CD while the LCST decreased sharply at presence of α‐CD. Furthermore, UV spectroscopy showed that the photoisomerization of the polymer solution went on rapidly and reversibly, and 2D NOESY data suggested that the inclusion complexation of α‐CD with trans azobenzene moiety and the decomplexation with cis azobenzene resulted in reversible solubility behavior when objected to UV and Vis light irradiation alternately. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Poly (o‐toluidine) (POT) salts doped with organic sulfonic acids (β‐naphthalene sulfonic acid, camphor sulfonic acid, and p‐toluene sulfonic acid) were directly synthesized by using a new solid‐state polymerization method. The FTIR spectra, ultraviolet visibility (UV–vis) absorption spectra, and X‐ray diffraction patterns were used to characterize the molecular structures of the POT salts. Voltammetric study was done to investigate the electrochemical behaviors of all these POT salts. The FTIR and UV–vis absorption spectra revealed that the POT salts were composed of mixed oxidation state phases. All POT salts contained the conducting emeraldine salt (half‐oxidized and protonated form) phase; the pernigraniline (fully oxidized form) phase is predominant in POT doped with β‐naphthalene sulfonic acid, and POT doped with p‐toluene sulfonic acid had the highest doping level. The X‐ray diffraction patterns showed that the obtained POT doped with organic sulfonic acids were lower at crystallinity. The conductivity of the POT salts were found to be of the order 10?3‐10?4 S/cm. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1630–1634, 2005  相似文献   

11.
A new conducting polymer was synthesized by electrochemical polymerization of 4‐(2,5‐di‐2‐thiophen‐2‐yl‐pyrrol‐1‐yl)‐phthalonitrile (SNS‐PN). Electrochemical polymerization of SNS‐PN was performed in acetonitrile/0.2M LiClO4 solvent/electrolyte couple. Characterizations of the resulting polymer P(SNS‐PN) were carried out by cyclic voltammetry, UV–vis, and Fourier transform infrared (FTIR) spectroscopic techniques. Spectroelectrochemical studies revealed that P(SNS‐PN) has an electronic band gap of 2.45 eV and exhibits electrochromic behavior. The switching ability of polymer was also monitored and the percentage transmittance change (ΔT%) was found as 24%. It is also found that P(SNS‐PN) is fluorescent and its fluorescence intensity enhances in the presence of cations. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The electrochemical properties of neutral (dedoped) and oxidized (doped) poly(1,11‐bis(1,1‐pyrrole)‐3,6,9‐trioxaundecane) (poly‐ I ) film electrodes were investigated using cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques. Poly‐ I was deposited on glassy carbon electrode (GCE) from acetonitrile solution containing 5.0 × 10?3M 1,11‐bis(1,1‐pyrrole)‐3,6,9‐trioxaundecane ( I ) and 0.1M LiClO4 supporting electrolyte. Doped poly‐ I exhibits a single semicircle in its complex‐capacitance plots, indicating a single dominant ion transport process, together with high capacitance values. These features make this polymer film a candidate for an energy storage material. Also, poly‐ I can be a candidate as a sensory material for the detection of Ag+ based on impedance parameters. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

13.
In this study, a multifunctional ‘clicked’ naphthalimide carbazole derivative (CNaP) was synthesized via Huisgen 1,3‐dipolar cycloaddition reaction. Combining carbazole as an electroactive group with naphthalimide as a fluorescence group via click chemistry imparts multifunctional properties to this unique structure. CNaP was characterized via Fourier transform IR, 13C and 1H NMR spectroscopy as well as fluorescence and electrochemical measurements. The electrochemical polymerization of the CNaP monomer was carried out in acetonitrile/boron trifluoride diethyl etherate (2:1) (v/v) by the cyclic voltammetry technique. The resulting polycarbazole‐derived conductive polymer was characterized via optical and electrochemical measurements. PCNaP displayed multi‐electrochromism behaviour with good optical contrast (41% at 693 nm) and switching time (1.92 s at 693 nm). These results demonstrate that the new ‘clicked’ fluorescent, polycarbazole‐derived conductive polymer can be used in various applications such as electrochemical/optical sensors and electrochromic and fluorescence imaging devices. © 2019 Society of Chemical Industry  相似文献   

14.
Electropolymerization of O‐phenylenediamine (o‐PD) on Pt‐electrode from a deoxygenated aqueous acid medium was carried out using cyclic voltammetry technique. The kinetic parameters were calculated by means of electrochemical data. The experimentally obtained kinetic equation was RP,E = kE [monomer]1.19 [acid]1.23 [electrolyte]0.87 from the value of the anodic current density using cyclic voltammetry technique. The apparent activation energy (Ea) is found to be 28.34 kJ mol?1. The polymer films obtained have been characterized by X‐ray diffraction, elemental analysis, scanning electron microscopy, 1H‐NMR, 13C‐NMR, UV‐visible, and IR spectroscopy. The mechanism of the electrochemical polymerization reaction has been discussed. TGA is used to confirm the proposed structure and determination of the number of water molecules in the polymeric chain unit. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
The layer‐by‐layer self‐assembly technique was used to fabricate a series of multilayer thin films with poly[4′‐(4‐methacryloyphenyl)‐2,2′:6′,2″‐terpyridine] (PmPhtpy), polycyanofullerenes, and transition metals (Ni2+ and Co2+). The polymer PmPhtpy was prepared by free‐radical polymerization, and this was confirmed by Fourier transform infrared (FTIR) and 1H‐NMR spectroscopy. The polycyanofullerenes, which were characterized by FTIR, ultraviolet–visible (UV–vis), and 13C‐NMR spectroscopy, was synthesized via the bromination of fullerene and then substitution with a nucleophilic reagent [potassium cyanide (KCN)]. The optical properties of the films were measured by attenuated total reflection infrared and UV–vis spectroscopy, and the results indicate that the driving force of the fabrication of the multilayer film was the coordination interaction. The magnetic behavior was examined as a function of the magnetic field strength at 5 K and the temperature (5–300 K). The magnetic hysteresis loops of the films showed a typical S shape at 5 K; this suggested soft ferromagnetic properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40681.  相似文献   

16.
Electrochemical copolymerization of o‐dihydroxybenzene (oDHB) and 3‐methylthiophene (3MeT) was successfully achieved in boron trifluoride diethyl etherate by direct anodic oxidation of the monomer mixtures, although the oxidation potentials of oDHB and 3MeT were quite different. The influence of the applied polymerization potential on the synthesis of the copolymers was investigated. The higher applied potential favored the incorporation of 3MeT units into the copolymers. The structure and properties of the copolymers were investigated with UV‐vis spectroscopy, fluorescence spectroscopy, FTIR spectroscopy, and thermal analysis. The novel copolymers had many advantages, including good redox activity, good thermal stability, and high electrical conductivity. Additionally, the copolymers fluorescence properties that were tunable through changes in the feed ratio of the monomer mixtures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
The copolymer of pyrrole and aniline, poly(pyrrole‐co‐aniline), has been prepared by chemical oxidation of corresponding monomer mixtures with ammonium peroxysulfate. Techniques of FTIR, SEM‐EDS, and BET surface area measurement were used to characterize the structure and morphology of the copolymer. The electrochemical properties of the copolymer were investigated by cyclic voltammetry, galvanostatic charge‐discharge, and electrochemical impedance spectroscopy. The results indicated that poly(pyrrole‐co‐aniline) was about 100–300 nm in diameter and showed better electrochemical capacitive performance than polypyrrole and polyaniline. The specific capacitance of the copolymer electrode was 827 F/g at a current of 8 mA/cm2 in 1 mol/L Na2SO4 electrolyte. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Poly(n‐undecyl isocyanate) (PUDIC)/n‐dodecylbenzenesulfonic acid (DBSA)‐doped polyaniline (PANIDBSA) polyblend was prepared and the effect of the H‐bonding between these two polymers on the compatibility, conjugation chain length of PANIDBSA, and helixity of PUDIC in the polyblend system were studied. The monomer and polymer were characterized by NMR spectra and the polyblend was analyzed by FTIR, UV–vis spectra, and wide‐angle X‐ray diffraction. It was found when the blend composition of the PUDIC was higher than 10%, the WAXD patterns demonstrated lower angle shifting for the peaks at around 2θ = 2–2.5°, referring to the distance between the layers of the layered structure of PANIDBSA crystalline with increasing PUDIC, indicating the expansion of the layered structure of PANIDBSA. The FTIR spectra illustrated the presence of an absorption peak at 1700 cm?1 shift to higher wave number with PUDIC due to its H‐bonding with PANIDBSA. The UV–vis spectra of PANIDBSA described a blue‐shift of the λmax with PUDIC, indicating that the presence of PUDIC in the polyblend system can interrupt and decrease the conjugation chain length of PANIDBSA. The optical activity of the helical PUDIC decreased notably with the presence of PANIDBSA, resulting from the reversed helical effect (de‐nature) of H‐bonding. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Electroactive poly(3‐amino‐4‐hydroxybenzoic acid) nanoparticles were synthesized using cyclic voltammetry and exhibited high electroactivity in 0.30 M Na2SO4 solutions with pH values ranging from 1.0 to 12.0. This indicates that polymer has excellent electrochemical properties even in near‐neutral and alkaline solutions compared to polyaniline. The anodic and cathodic peak currents of the polymer increase linearly with the square root of scan rate from 5 to 150 mV s?1, indicating that the electrode reaction is controlled by a diffusion process. The structure of the polymer was investigated using UV–visible spectroscopy, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and X‐ray photoelectron spectroscopy. Based on the spectroscopic measurements, a possible polymerization mechanism of 3‐amino‐4‐hydroxybenzoic acid was proposed. The polymer surface morphology was characterized by scanning electron microscopy. The enhanced electrochemical properties are ascribed to the synergistic effect of ? COOH and ? OH groups in the polymer chains. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42190.  相似文献   

20.
An ionic liquid based polymer, poly(1‐ethyl‐3‐(acryloyloxy)hexylimidazolium iodide) (PEAI), was synthesized and employed as electrolyte to fabricate all‐solid‐state dye‐sensitized solar cells. The photophysical properties of PEAI were studied by UV–vis absorption spectroscopy and photoluminescence spectroscopy. PEAI exhibited significant hypochromism and red shift in UV–vis absorption spectra and large Stokes shifts in photoluminescence spectra, indicating the formation of a novel π‐stacked structure in which the imidazolium rings in the side chain were stacked. Without iodine in its preparation, DSC with PEAI electrolyte achieved a conversion efficiency of 5.29% under AM 1.5 simulated solar light irradiation (100 mW cm?2). The side‐chain imidazolium π‐π stacking in PEAI played a key role in the holes transport from the photoanode to the counter electrode. Both the open‐circuit voltage and short‐circuit current density showed decreases with the increase in the content of iodine in PEAI electrolyte. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号